Journal of Materials Engineering and Performance

, Volume 26, Issue 4, pp 1967–1977 | Cite as

Hot Deformation Behavior and Intrinsic Workability of Carbon Nanotube-Aluminum Reinforced ZA27 Composites

  • Yang Liu
  • Cong Geng
  • Yunke Zhu
  • Jinfeng Peng
  • Junrui Xu


Using a controlled thermal simulator system, hybrid carbon nanotube-aluminum reinforced ZA27 composites were subjected to hot compression testing in the temperature range of 473-523 K with strain rates of 0.01-10 s−1. Based on experimental results, a developed-flow stress model was established using a constitutive equation coupled with strain to describe strain softening arising from dynamic recrystallization. The intrinsic workability was further investigated by constructing three-dimensional (3D) processing maps aided by optical observations of microstructures. The 3D processing maps were constructed based on a dynamic model of materials to delineate variations in the efficiency of power dissipation and flow instability domains. The instability domains exhibited adiabatic shear band and flow localization, which need to be prevented during hot processing. The recommended domain is predicated to be within the temperature range 550-590 K and strain rate range 0.01-0.35 s−1. In this state, the main softening mechanism is dynamic recrystallization. The results from processing maps agree well with the microstructure observations.


3D processing maps carbon nanotubes dynamic recrystallization hot deformation zinc-aluminum matrix composites 



The work was supported by the Natural Science Foundation of Hunan Province, China (Grant No. 2016JJ3124) and General project of the education department of Hunan Province (Grant No.16C1526). We thank Dr. Lianghong Xiao, Dr. Wenjuan Zhao, and Dr. Weinan Cao for test assistance.


  1. 1.
    Y. Liu, H.Y. Li, H.F. Jiang, and X.J. Su, Artificial Neural Network Modelling to Predict Hot Deformation Behaviour of Zinc-Aluminium Alloy, Mater. Sci. Tech. -Lond., 2013, 29, p 184–189CrossRefGoogle Scholar
  2. 2.
    Y. Liu, H.Y. Li, H.F. Jiang, and X.C. Lu, Effects of Heat Treatment on the Microstructure and Mechanical Properties of ZA27 Alloy, Trans. Nonferrous Met. Soc. China, 2013, 23, p 642–649CrossRefGoogle Scholar
  3. 3.
    J.H. Wang, J.F. Huang, X.P. Su, and C.J. Wu, Effect of Reverse Modification of Al-5Ti-B Master Alloy on Hypoeutectic ZnAl4Y Alloy, Mater. Des., 2012, 38, p 133–138CrossRefGoogle Scholar
  4. 4.
    Y.H. Zhu, S. To, X.M. Liu, and G.L. Hu, Effect of Static Electropulsing on Microstructure and Elongation of a Zn-Al Alloy (ZA22), Metall. Mater. Trans. A, 2011, 42, p 1933–1940CrossRefGoogle Scholar
  5. 5.
    A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka, Effect of Carbon Nanotube (CNT) Content on the Mechanical Properties of CNT-Reinforced Aluminium Composites, Compos. Sci. Technol., 2010, 70, p 2237–2241CrossRefGoogle Scholar
  6. 6.
    H.J. Choi, J.H. Shin, and D.H. Bae, Grain Size Effect on the Strengthening Behavior of Aluminum-Based Composites Containing Multi-Walled Carbon Nanotubes, Compos. Sci. Technol., 2011, 71, p 1699–1705CrossRefGoogle Scholar
  7. 7.
    H.J. Choi, G.B. Kwon, G.Y. Lee, and D.H. Bae, Reinforcement with Carbon Nanotubes in Aluminum Matrix Composites, Scr. Mater., 2008, 59, p 360–363CrossRefGoogle Scholar
  8. 8.
    C.S. Goh, J. Wei, L.C. Lee, and M. Gupta, Ductility Improvement and Fatigue Studies in Mg-CNT Nanocomposites, Compos. Sci. Technol., 2008, 68, p 1432–1439CrossRefGoogle Scholar
  9. 9.
    B.M. Praveen, T.V. Venkatesha, Y.N. Arthoba, and K. Prashantha, Corrosion Studies of Carbon Nanotubes-Zn Composite Coating, Surf. Coat. Technol., 2007, 201, p 5836–5842CrossRefGoogle Scholar
  10. 10.
    M.H. Naia, J. Wei, and M. Gupta, Interface Tailoring to Enhance Mechanical Properties of Carbon Nanotube Reinforced Magnesium Composites, Mater. Des., 2014, 60, p 490–495CrossRefGoogle Scholar
  11. 11.
    M.K. Habibia, M. Paramsothy, A.M.S. Hamouda, and M. Gupta, Using Integrated Hybrid (Al + CNT) Reinforcement to Simultaneously Enhance Strength and Ductility of Magnesium, Compos. Sci. Technol., 2011, 71, p 734–741CrossRefGoogle Scholar
  12. 12.
    M.K. Habibia, A.M.S. Hamouda, and M. Gupta, Enhancing Tensile and Compressive Strength of Magnesium Using Ball Milled Al + CNT Reinforcement, Compos. Sci. Technol., 2012, 72, p 290–298CrossRefGoogle Scholar
  13. 13.
    D.X. Wen, Y.C. Lin, J. Chen, J. Deng, X.M. Chen, J.L. Zhang, and M. He, Effects of Initial Aging Time on Processing Map and Microstructures of a Nickel-Based Superalloy, Mater. Sci. Eng., A, 2015, 620, p 319–332CrossRefGoogle Scholar
  14. 14.
    D.G. He, Y.C. Lin, M.S. Chen, J. Chen, D.X. Wen, and X.M. Chen, Effect of Pre-treatment on Hot Deformation Behavior and Processing Map of an Aged Nickel-Based Superalloy, J. Alloys Compd., 2015, 649, p 1075–1084CrossRefGoogle Scholar
  15. 15.
    D. Samantaray, S. Mandal, A.K. Bhaduri, S. Venugopal, and P.V. Sivaprasad, Analysis and Mathematical Modelling of Elevated Temperature Flow Behaviour of Austenitic Stainless Steels, Mater. Sci. Eng., A, 2011, 528, p 1937–1943CrossRefGoogle Scholar
  16. 16.
    A. Mazahery and M.O. Shabani, Mechanical Properties of Squeeze Cast A356 Composites Reinforced with B4C Particulates, J. Mater. Eng. Perform., 2011, 21, p 247–252CrossRefGoogle Scholar
  17. 17.
    S. Gangolu, A.G. Rao, N. Prabhu, V.P. Deshmukh, and B.P. Kashyap, Hot Workability and Flow Characteristics of Aluminum-5 wt.% B4C Composite, J. Mater. Eng. Perform., 2014, 23, p 1366–1373CrossRefGoogle Scholar
  18. 18.
    F. Mohammadi Shore, M. Morakabati, S.M. Abbasi, and A. Momeni, Hot Deformation Behavior of Incoloy 901 Through Hot Tensile Testing, J. Mater. Eng. Perform., 2014, 23, p 1424–1433CrossRefGoogle Scholar
  19. 19.
    Y.C. Lin, K.K. Li, H.B. Li, J. Chen, X.M. Chen, and D.X. Wen, New Constitutive Model for High-Temperature Deformation Behavior of Inconel 718 Superalloy, Mater. Des., 2015, 74, p 108–118CrossRefGoogle Scholar
  20. 20.
    Y.C. Lin, X.M. Chen, D.X. Wen, and M.S. Chen, A Physically-Based Constitutive Model for a Typical Nickel-Based Superalloy, Comput. Mater. Sci., 2014, 83, p 282–289CrossRefGoogle Scholar
  21. 21.
    Y.C. Lin, D.X. Wen, Y.C. Huang, X.M. Chen, and X.W. Chen, A Unified Physically-Based Constitutive Model for Describing Strain Hardening Effect and Dynamic Recovery Behavior of a Ni-Based Superalloy, J. Mater. Res., 2015, 30, p 3784–3794CrossRefGoogle Scholar
  22. 22.
    Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15, p 1883–1892CrossRefGoogle Scholar
  23. 23.
    J.Q. Li, J. Liu, and Z.S. Cui, Characterization of Hot Deformation Behavior of Extruded ZK60 Magnesium Alloy Using 3D Processing Maps, Mater. Des., 2014, 56, p 889–897CrossRefGoogle Scholar
  24. 24.
    J. Liu, Z.S. Cui, and C.X. Li, Analysis of Metal Workability by Integration of FEM and 3-D Processing Maps, J. Mater. Process. Technol., 2008, 205, p 497–505CrossRefGoogle Scholar
  25. 25.
    P. Zhang, F. Li, and Q. Wan, Constitutive Equation and Processing Map for Hot Deformation of SiC Particles Reinforced Metal Matrix Composites, J. Mater. Eng. Perform., 2010, 19, p 1290–1297CrossRefGoogle Scholar
  26. 26.
    S.S. Zhou, K.K. Deng, J.C. Li, K.B. Nie, F.J. Xu, H.F. Zhou, and J.F. Fan, Hot Deformation Behavior and Workability Characteristics of Bimodal size SiCp/AZ91 Magnesium Matrix Composite with Processing Map, Mater. Des., 2014, 64, p 177–184CrossRefGoogle Scholar
  27. 27.
    C. Zener and J.H. Hollomon, Effect of Strain Rate upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32CrossRefGoogle Scholar
  28. 28.
    C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14, p 1136–1138CrossRefGoogle Scholar
  29. 29.
    Y.C. Lin, M.S. Chen, and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Comput. Mater. Sci., 2008, 42, p 470–477CrossRefGoogle Scholar
  30. 30.
    Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRefGoogle Scholar
  31. 31.
    Y.C. Lin, M.S. Chen, and J. Zhang, Modeling of Flow Stress of 42CrMo Steel Under Hot Compression, Mater. Sci. Eng., A, 2009, 499, p 88–92CrossRefGoogle Scholar
  32. 32.
    W.D. Zeng, Y.Y. Zhou, Y. Shu, Y.Q. Zhao, J. Yang, and X.M. Zhang, A Study of Hot Deformation Mechanisms in Ti-40 Burn Resistant Titanium Alloy Using Processing Maps, Rare Metal. Mater. Eng., 2007, 36, p 1–5Google Scholar
  33. 33.
    Y.C. Lin, C.Y. Zhao, M.S. Chen, and D.D. Chen, A Novel Constitutive Model for Hot Deformation Behaviors of Ti-6Al-4 V Alloy Based on Probabilistic Method, Appl. Phys. A, 2016, 122, p 716CrossRefGoogle Scholar
  34. 34.
    X.N. Peng, H.Z. Guo, Z.F. Shi, C. Qin, Z.L. Zhao, and Z.K. Yao, Study on the Hot Deformation Behavior of TC4-DT Alloy with Equiaxed α + β Starting Structure Based on Processing Map, Mater. Sci. Eng., A, 2014, 605, p 80–88CrossRefGoogle Scholar
  35. 35.
    X.S. Xia, Q. Chen, J.P. Li, D.Y. Shu, C.K. Hu, S.H. Huang, and Z.D. Zhao, Characterization of Hot Deformation Behavior of As-Extruded Mg-Gd-Y-Zn-Zr Alloy, J. Alloys Compd., 2014, 610, p 203–211CrossRefGoogle Scholar
  36. 36.
    T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Hot Working of Commercial Ti-6Al-4 V with an Equiaxed α-β Microstructure: Materials Modeling Considerations, Mater. Sci. Eng., A, 2000, 284, p 184–194CrossRefGoogle Scholar
  37. 37.
    H. Ziegler, An Introduction to Thermomechanics, North-Holland publishing company, Amsterdam, 1983Google Scholar
  38. 38.
    A.H. Cottrell, Dislocation and Plastic Flow in Crystals, Oxford University Press, London, 1973, p 641–649Google Scholar
  39. 39.
    M. Srinivansan, C. Loganathan, R. Narayanasamy, V. Senthilkumar, Q.B. Nguyen, and M. Gupta, Study on Hot Deformation Behavior and Microstructure Evolution of Cast-Extruded AZ31B Magnesium Alloy and Nanocomposite Using Processing Map, Mater. Des., 2013, 47, p 449–455CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Yang Liu
    • 1
  • Cong Geng
    • 1
  • Yunke Zhu
    • 1
  • Jinfeng Peng
    • 1
  • Junrui Xu
    • 1
  1. 1.School of Mechanical EngineeringXiangtan UniversityXiangtanChina

Personalised recommendations