Skip to main content
Log in

Hot Deformation Behavior and Intrinsic Workability of Carbon Nanotube-Aluminum Reinforced ZA27 Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Using a controlled thermal simulator system, hybrid carbon nanotube-aluminum reinforced ZA27 composites were subjected to hot compression testing in the temperature range of 473-523 K with strain rates of 0.01-10 s−1. Based on experimental results, a developed-flow stress model was established using a constitutive equation coupled with strain to describe strain softening arising from dynamic recrystallization. The intrinsic workability was further investigated by constructing three-dimensional (3D) processing maps aided by optical observations of microstructures. The 3D processing maps were constructed based on a dynamic model of materials to delineate variations in the efficiency of power dissipation and flow instability domains. The instability domains exhibited adiabatic shear band and flow localization, which need to be prevented during hot processing. The recommended domain is predicated to be within the temperature range 550-590 K and strain rate range 0.01-0.35 s−1. In this state, the main softening mechanism is dynamic recrystallization. The results from processing maps agree well with the microstructure observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y. Liu, H.Y. Li, H.F. Jiang, and X.J. Su, Artificial Neural Network Modelling to Predict Hot Deformation Behaviour of Zinc-Aluminium Alloy, Mater. Sci. Tech. -Lond., 2013, 29, p 184–189

    Article  Google Scholar 

  2. Y. Liu, H.Y. Li, H.F. Jiang, and X.C. Lu, Effects of Heat Treatment on the Microstructure and Mechanical Properties of ZA27 Alloy, Trans. Nonferrous Met. Soc. China, 2013, 23, p 642–649

    Article  Google Scholar 

  3. J.H. Wang, J.F. Huang, X.P. Su, and C.J. Wu, Effect of Reverse Modification of Al-5Ti-B Master Alloy on Hypoeutectic ZnAl4Y Alloy, Mater. Des., 2012, 38, p 133–138

    Article  Google Scholar 

  4. Y.H. Zhu, S. To, X.M. Liu, and G.L. Hu, Effect of Static Electropulsing on Microstructure and Elongation of a Zn-Al Alloy (ZA22), Metall. Mater. Trans. A, 2011, 42, p 1933–1940

    Article  Google Scholar 

  5. A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka, Effect of Carbon Nanotube (CNT) Content on the Mechanical Properties of CNT-Reinforced Aluminium Composites, Compos. Sci. Technol., 2010, 70, p 2237–2241

    Article  Google Scholar 

  6. H.J. Choi, J.H. Shin, and D.H. Bae, Grain Size Effect on the Strengthening Behavior of Aluminum-Based Composites Containing Multi-Walled Carbon Nanotubes, Compos. Sci. Technol., 2011, 71, p 1699–1705

    Article  Google Scholar 

  7. H.J. Choi, G.B. Kwon, G.Y. Lee, and D.H. Bae, Reinforcement with Carbon Nanotubes in Aluminum Matrix Composites, Scr. Mater., 2008, 59, p 360–363

    Article  Google Scholar 

  8. C.S. Goh, J. Wei, L.C. Lee, and M. Gupta, Ductility Improvement and Fatigue Studies in Mg-CNT Nanocomposites, Compos. Sci. Technol., 2008, 68, p 1432–1439

    Article  Google Scholar 

  9. B.M. Praveen, T.V. Venkatesha, Y.N. Arthoba, and K. Prashantha, Corrosion Studies of Carbon Nanotubes-Zn Composite Coating, Surf. Coat. Technol., 2007, 201, p 5836–5842

    Article  Google Scholar 

  10. M.H. Naia, J. Wei, and M. Gupta, Interface Tailoring to Enhance Mechanical Properties of Carbon Nanotube Reinforced Magnesium Composites, Mater. Des., 2014, 60, p 490–495

    Article  Google Scholar 

  11. M.K. Habibia, M. Paramsothy, A.M.S. Hamouda, and M. Gupta, Using Integrated Hybrid (Al + CNT) Reinforcement to Simultaneously Enhance Strength and Ductility of Magnesium, Compos. Sci. Technol., 2011, 71, p 734–741

    Article  Google Scholar 

  12. M.K. Habibia, A.M.S. Hamouda, and M. Gupta, Enhancing Tensile and Compressive Strength of Magnesium Using Ball Milled Al + CNT Reinforcement, Compos. Sci. Technol., 2012, 72, p 290–298

    Article  Google Scholar 

  13. D.X. Wen, Y.C. Lin, J. Chen, J. Deng, X.M. Chen, J.L. Zhang, and M. He, Effects of Initial Aging Time on Processing Map and Microstructures of a Nickel-Based Superalloy, Mater. Sci. Eng., A, 2015, 620, p 319–332

    Article  Google Scholar 

  14. D.G. He, Y.C. Lin, M.S. Chen, J. Chen, D.X. Wen, and X.M. Chen, Effect of Pre-treatment on Hot Deformation Behavior and Processing Map of an Aged Nickel-Based Superalloy, J. Alloys Compd., 2015, 649, p 1075–1084

    Article  Google Scholar 

  15. D. Samantaray, S. Mandal, A.K. Bhaduri, S. Venugopal, and P.V. Sivaprasad, Analysis and Mathematical Modelling of Elevated Temperature Flow Behaviour of Austenitic Stainless Steels, Mater. Sci. Eng., A, 2011, 528, p 1937–1943

    Article  Google Scholar 

  16. A. Mazahery and M.O. Shabani, Mechanical Properties of Squeeze Cast A356 Composites Reinforced with B4C Particulates, J. Mater. Eng. Perform., 2011, 21, p 247–252

    Article  Google Scholar 

  17. S. Gangolu, A.G. Rao, N. Prabhu, V.P. Deshmukh, and B.P. Kashyap, Hot Workability and Flow Characteristics of Aluminum-5 wt.% B4C Composite, J. Mater. Eng. Perform., 2014, 23, p 1366–1373

    Article  Google Scholar 

  18. F. Mohammadi Shore, M. Morakabati, S.M. Abbasi, and A. Momeni, Hot Deformation Behavior of Incoloy 901 Through Hot Tensile Testing, J. Mater. Eng. Perform., 2014, 23, p 1424–1433

    Article  Google Scholar 

  19. Y.C. Lin, K.K. Li, H.B. Li, J. Chen, X.M. Chen, and D.X. Wen, New Constitutive Model for High-Temperature Deformation Behavior of Inconel 718 Superalloy, Mater. Des., 2015, 74, p 108–118

    Article  Google Scholar 

  20. Y.C. Lin, X.M. Chen, D.X. Wen, and M.S. Chen, A Physically-Based Constitutive Model for a Typical Nickel-Based Superalloy, Comput. Mater. Sci., 2014, 83, p 282–289

    Article  Google Scholar 

  21. Y.C. Lin, D.X. Wen, Y.C. Huang, X.M. Chen, and X.W. Chen, A Unified Physically-Based Constitutive Model for Describing Strain Hardening Effect and Dynamic Recovery Behavior of a Ni-Based Superalloy, J. Mater. Res., 2015, 30, p 3784–3794

    Article  Google Scholar 

  22. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15, p 1883–1892

    Article  Google Scholar 

  23. J.Q. Li, J. Liu, and Z.S. Cui, Characterization of Hot Deformation Behavior of Extruded ZK60 Magnesium Alloy Using 3D Processing Maps, Mater. Des., 2014, 56, p 889–897

    Article  Google Scholar 

  24. J. Liu, Z.S. Cui, and C.X. Li, Analysis of Metal Workability by Integration of FEM and 3-D Processing Maps, J. Mater. Process. Technol., 2008, 205, p 497–505

    Article  Google Scholar 

  25. P. Zhang, F. Li, and Q. Wan, Constitutive Equation and Processing Map for Hot Deformation of SiC Particles Reinforced Metal Matrix Composites, J. Mater. Eng. Perform., 2010, 19, p 1290–1297

    Article  Google Scholar 

  26. S.S. Zhou, K.K. Deng, J.C. Li, K.B. Nie, F.J. Xu, H.F. Zhou, and J.F. Fan, Hot Deformation Behavior and Workability Characteristics of Bimodal size SiCp/AZ91 Magnesium Matrix Composite with Processing Map, Mater. Des., 2014, 64, p 177–184

    Article  Google Scholar 

  27. C. Zener and J.H. Hollomon, Effect of Strain Rate upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32

    Article  Google Scholar 

  28. C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14, p 1136–1138

    Article  Google Scholar 

  29. Y.C. Lin, M.S. Chen, and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Comput. Mater. Sci., 2008, 42, p 470–477

    Article  Google Scholar 

  30. Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759

    Article  Google Scholar 

  31. Y.C. Lin, M.S. Chen, and J. Zhang, Modeling of Flow Stress of 42CrMo Steel Under Hot Compression, Mater. Sci. Eng., A, 2009, 499, p 88–92

    Article  Google Scholar 

  32. W.D. Zeng, Y.Y. Zhou, Y. Shu, Y.Q. Zhao, J. Yang, and X.M. Zhang, A Study of Hot Deformation Mechanisms in Ti-40 Burn Resistant Titanium Alloy Using Processing Maps, Rare Metal. Mater. Eng., 2007, 36, p 1–5

    Google Scholar 

  33. Y.C. Lin, C.Y. Zhao, M.S. Chen, and D.D. Chen, A Novel Constitutive Model for Hot Deformation Behaviors of Ti-6Al-4 V Alloy Based on Probabilistic Method, Appl. Phys. A, 2016, 122, p 716

    Article  Google Scholar 

  34. X.N. Peng, H.Z. Guo, Z.F. Shi, C. Qin, Z.L. Zhao, and Z.K. Yao, Study on the Hot Deformation Behavior of TC4-DT Alloy with Equiaxed α + β Starting Structure Based on Processing Map, Mater. Sci. Eng., A, 2014, 605, p 80–88

    Article  Google Scholar 

  35. X.S. Xia, Q. Chen, J.P. Li, D.Y. Shu, C.K. Hu, S.H. Huang, and Z.D. Zhao, Characterization of Hot Deformation Behavior of As-Extruded Mg-Gd-Y-Zn-Zr Alloy, J. Alloys Compd., 2014, 610, p 203–211

    Article  Google Scholar 

  36. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Hot Working of Commercial Ti-6Al-4 V with an Equiaxed α-β Microstructure: Materials Modeling Considerations, Mater. Sci. Eng., A, 2000, 284, p 184–194

    Article  Google Scholar 

  37. H. Ziegler, An Introduction to Thermomechanics, North-Holland publishing company, Amsterdam, 1983

    Google Scholar 

  38. A.H. Cottrell, Dislocation and Plastic Flow in Crystals, Oxford University Press, London, 1973, p 641–649

    Google Scholar 

  39. M. Srinivansan, C. Loganathan, R. Narayanasamy, V. Senthilkumar, Q.B. Nguyen, and M. Gupta, Study on Hot Deformation Behavior and Microstructure Evolution of Cast-Extruded AZ31B Magnesium Alloy and Nanocomposite Using Processing Map, Mater. Des., 2013, 47, p 449–455

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the Natural Science Foundation of Hunan Province, China (Grant No. 2016JJ3124) and General project of the education department of Hunan Province (Grant No.16C1526). We thank Dr. Lianghong Xiao, Dr. Wenjuan Zhao, and Dr. Weinan Cao for test assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Geng, C., Zhu, Y. et al. Hot Deformation Behavior and Intrinsic Workability of Carbon Nanotube-Aluminum Reinforced ZA27 Composites. J. of Materi Eng and Perform 26, 1967–1977 (2017). https://doi.org/10.1007/s11665-017-2628-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2628-4

Keywords

Navigation