Advertisement

Journal of Materials Engineering and Performance

, Volume 26, Issue 4, pp 1685–1700 | Cite as

Microstructure Characterization, Mechanical, and Tribological Properties of Slow-Cooled Sb-Treated Al-20Mg2Si-Cu In Situ Composites

  • Saeed Farahany
  • Hamidreza Ghandvar
  • Nur Azmah Nordin
  • Ali Ourdjini
Article

Abstract

Role of Sb addition on structural characteristics, mechanical properties, and wear behavior of Al-20Mg2Si-Cu in situ composite under slow cooling condition was thoroughly investigated in this study using stereomicroscopy, optical and scanning electron microscopy, thermal analysis, tensile, impact, hardness tests, and wear tester. Results show that addition of 0.8 wt.% Sb was found to produce a change in the morphology of primary Mg2Si from dendrite to fine polygonal shape. At this Sb addition, the primary Mg2Si phase also exhibited a reduction in size from 179.4 to 128.6 μm, an increase in density of Mg2Si per area from 12.5 to 32.2 particle/mm2, and a decrease in the aspect ratio from 1.24 to 1.11. Increasing the amount of Sb added up to 1 wt.% also resulted in a decrease in both nucleation and growth temperatures of the eutectic Mg2Si by 2.6 and 1.7 °C respectively, which is most likely due to change of eutectic Mg2Si morphology from flake to fibrous structure. Thermal analysis technique showed that distribution of Mg2Si particles influences the heat conductivity during the solidification process of Al-Mg2Si composite. The results also showed that improvements in mechanical properties of composite were obtained with increasing Sb content due to modification of both primary and eutectic Mg2Si and due to intermetallic compound transformation from β-Al5FeSi to α-Al15(Fe,Mn)3Si2. Examination of fracture surfaces from tensile and impact samples showed that the base composite failed in a brittle manner with decohered or debonded Mg2Si particles, whereas the 0.8 wt.% Sb-treated composite showed more cracked Mg2Si and ductile fracture in the matrix. Wear properties improved significantly with addition of Sb due to modification and better dispersion of fine Mg2Si particles in matrix.

Keywords

casting composite mechanical properties Mg2Si microstructure wear 

References

  1. 1.
    S.L. Pramod, S. Bakshi, and B.S. Murty, Aluminum-Based Cast In Situ Composites: A Review, J. Mater. Eng. Perform., 2015, 24(6), p 2185–2207CrossRefGoogle Scholar
  2. 2.
    J.-T. Zhang, Y.-G. Zhao, X.-F. Xu, and X.-B. Liu, Effect of Ultrasonic on Morphology of Primary Mg2Si in In situ Mg2Si/Al Composite Trans. Nonferrous Metals Soc. China, 2013, 23(10), p 2852–2856CrossRefGoogle Scholar
  3. 3.
    N. Nasiri, M. Emamy, A. Malekan, and M.H. Norouzi, Microstructure and Tensile Properties of Cast Al-15%Mg2Si Composite: Effects of Phosphorous Addition and Heat Treatment, Mater. Sci. Eng. A, 2012, 556, p 446–453CrossRefGoogle Scholar
  4. 4.
    M. Mabuchi, K. Kubota, and K. Higashi, Effect of Hot Extrusion on Mechanical Properties of a Mg-Si-Al Alloy, Mater. Lett., 1994, 19(5-6), p 247–250CrossRefGoogle Scholar
  5. 5.
    M. Riffel and J. Schilz, Mechanical Alloying of Mg2Si, Scr. Metall. Mater., 1995, 32(12), p 1951–1956CrossRefGoogle Scholar
  6. 6.
    Du Jun and Kazuhiko Iwai, Modification of Primary Mg2Si Crystals in Hypereutectic Mg-Si Alloy by Application Alternating Current, Mater. Trans., 2009, 50(3), p 562–569CrossRefGoogle Scholar
  7. 7.
    R.E.N. Bo, Z.-X. Liu, R.-F. Zhao, T.-Q. Zhang, Z.-Y. Liu, M.-X. Wang, and Y.-G. Weng, Effect of Sb on Microstructure and Mechanical Properties of Mg2Si/Al-Si Composites, Trans Nonferrous Met. Soc. China., 2010, 20, p 1367–1373CrossRefGoogle Scholar
  8. 8.
    J. Zhang, Z. Fan, Y.Q. Wang, and B.L. Zhou, Microstructural Development of Al-15wt.%Mg2Si in situ Composite with Mischmetal Addition, Mater. Sci. Eng. A, 2000, 281, p 104–112CrossRefGoogle Scholar
  9. 9.
    R. Hadian, M. Emamy, N. Varahram, and N. Nemati, The Effect of Li on the Tensile Properties of Cast Al-Mg2Si Metal Matrix Composite, Mater. Sci. Eng. A, 2008, 490(1-2), p 250–257CrossRefGoogle Scholar
  10. 10.
    Q.D. Qin, Y.G. Zhao, C. Liu, W. Zhou, and P.J. Cong, Strontium Modification and Formation of Cubic Primary Mg2Si Crystals in Mg2Si/Al Composite, J. Alloys Compd., 2008, 454, p 142–146CrossRefGoogle Scholar
  11. 11.
    M. Emamy, R. Khorshidi, and A.H. Raouf, The Influence of Pure Na on the Microstructure and Tensile Properties of Al-Mg2Si Metal Matrix Composite, Mater. Sci. Eng. A, 2011, 528(13-14), p 4337–4342CrossRefGoogle Scholar
  12. 12.
    L. Chong, L. Xiangfa, and W. Yuying, Refinement and Modification Performance of Al-P Master Alloy on Primary Mg2Si in Al-Mg-Si Alloys, J. Alloys Compd., 2008, 465, p 145–150CrossRefGoogle Scholar
  13. 13.
    Y.G. Zhao, Q.D. Qin, Y.Q. Zhao, Y.H. Liang, and Q.C. Jiang, In-situ Mg2Si/Al-Si Composite Modified by K2TiF6, Mater. Lett., 2004, 58, p 2192–2195CrossRefGoogle Scholar
  14. 14.
    M.R. Ghorbani, M. Emamy, J. Rasizadehghani, and A.R. Emami, Effect of Mn Addition on the Microstructure and Tensile Properties of Al-15%Mg2Si Composite, Mater. Sci. Eng. A, 2012, 550, p 191–198CrossRefGoogle Scholar
  15. 15.
    W.U. Xiaofeng, G. Zhang, W.U. Fufa, and W. Zhe, Influence of Neodymium Addition on Microstructure, Tensile Properties and Fracture Behavior of Cast Al-Mg2Si Metal Matrix Composite, J. Rare Earths, 2013, 31(3), p 307–312CrossRefGoogle Scholar
  16. 16.
    B. Xiufang, W. Weimin, and Q. Jingyu, Liquid Structure of Al-12.5% Si Alloy Modified by Antimony, Mater. Charact., 2001, 46, p 25–29CrossRefGoogle Scholar
  17. 17.
    A.K. Prasada Rao, K. Das, B.S. Murty, and M. Chakraborty, On the Modification and Segregation Behavior of Sb in Al-7Si Alloy During Solidification, Mater. Lett., 2008, 62, p 2013–2016CrossRefGoogle Scholar
  18. 18.
    S. Farahany, A. Ourdjini, M.H. Idrsi, and S.G. Shabestari, Evaluation of the Effect of Bi, Sb, Sr and Cooling Condition on Eutectic Phases in an Al-Si-Cu Alloy (ADC12) by In situ Thermal Analysis, Thermochim. Acta, 2013, 559, p 59–68CrossRefGoogle Scholar
  19. 19.
    Y.-H. Zhao, X.-B. Wang, X.-H. Du, and C. Wang, Effects of Sb and Heat Treatment on the Microstructure of Al-15.5 wt.%Mg2Si Alloy, Int. J. Miner. Metall. Mater., 2013, 20(7), p 653–658CrossRefGoogle Scholar
  20. 20.
    H.Y. Wang, F. Liu, L. Chen, M. Zha, G.J. Liu, and Q.C. Jiang, The Effect of Sb Addition on Microstructures and Tensile Properties of Extruded Al-20Mg2Si-4Cu Alloy, Mater. Sci. Eng. A, 2016, 657, p 331–338CrossRefGoogle Scholar
  21. 21.
    S. Farahany, H. Ghandvar, N.A. Nordin, A. Ourdjini, and M.H. Idris, Effect of Primary and Eutectic Mg2Si Crystal Modifications on the Mechanical Properties and Sliding Wear Behaviour of an Al-20Mg2Si-2Cu-xBi Composite, J. Mater. Sci. Technol., 2016, 32(11), p 1083–1097CrossRefGoogle Scholar
  22. 22.
    W. Kurz and D.J. Fisher, Fundamentals of Solidification, 4th ed., Trans Tech Publications, Switzerland, 1998Google Scholar
  23. 23.
    N.A. Nordin, S. Farahany, A. Ourdjini, T.A. Abu Bakar, and E. Hamzah, Refinement of Mg2Si Reinforcement in a Commercial Al-20%Mg2Si In Situ Composite with Bismuth, Antimony and Strontium, Mater. Charact., 2013, 86, p 97–107CrossRefGoogle Scholar
  24. 24.
    N.A. Nordin, S. Farahany, T.A. Abu Bakar, E. Hamzah, and A. Ourdjini, Microstructure Development, Phase Reaction Characteristics and Mechanical Properties of a Commercial Al-20%Mg2Si-xCe In Situ Composite Solidified at a Slow Cooling Rate, J. Alloys Compd., 2015, 650, p 821–834CrossRefGoogle Scholar
  25. 25.
    J. Li, M. Elmadagli, V.Y. Gertsman, J. Lo, and A.T. Alpas, FIB and TEM Characterization of Subsurfaces of an Al-Si Alloy (A390) Subjected to Sliding Wear, Mater. Sci. Eng. A, 2006, 421(1–2), p 317–327CrossRefGoogle Scholar
  26. 26.
    M. Elmadagli and A.T. Alpas, Progression of Wear in the Mild Wear Regime of an Al-18.5% Si (A390) Alloy, Wear, 2006, 261(3-4), p 367–381CrossRefGoogle Scholar
  27. 27.
    J. Willner, G. Siwiec, and J. Botor, The Surface Tension of Liquid Cu-Fe-Sb Alloys, Appl. Surf. Sci., 2010, 256(9), p 2939–2943CrossRefGoogle Scholar
  28. 28.
    M. Mabuchi, K. Kubota, and K. Higashi, Tensile Strength, Ductility and Fracture of Magnesium-Silicon Alloys, J. Mater. Sci., 1996, 31(6), p 1529–1535CrossRefGoogle Scholar
  29. 29.
    O. Elsebaie, A.M. Samuel, and F.H. Samuel, Effects of Sr-Modification, Iron-Based Intermetallics and Aging Treatment on the Impact Toughness of 356 Al-Si-Mg Alloy, J. Mater. Sci., 2011, 46(9), p 3027–3045CrossRefGoogle Scholar
  30. 30.
    A. Saigal and J. Berry, Study of the Effects of Volume Fraction, Size and Shape of Silicon Particles on Mechanical Properties in Al-Si Alloys Using Finite Element Method, AFS Trans., 1985, 93, p 699–704Google Scholar
  31. 31.
    C.H. Caceres and J.R. Griffiths, Damage by the Cracking of Silicon Particles in an Al-7Si-0.4 Mg Casting Alloy, Acta Mater., 1996, 44(1), p 25–33CrossRefGoogle Scholar
  32. 32.
    S.G. Shabestari, The Effect of Iron and Manganese on the Formation of Intermetallic Compound in Aluminium-Silicon Alloys, Mater. Sci. Eng. A, 2004, 383(2), p 289–298CrossRefGoogle Scholar
  33. 33.
    J.F. Archard, Contact and Rubbing of Flat Surfaces, J. Appl. Phys., 1953, 24(8), p 981–988CrossRefGoogle Scholar
  34. 34.
    M.O. Shabani and A. Mazahery, Application of Finite Element Model and Artificial Neural Network in Characterization of Al Matrix Nanocomposites Using Various Training Algorithms, Metall. Mater. Trans. A, 2012, 43(6), p 2158–2165CrossRefGoogle Scholar
  35. 35.
    Y. Sun and H. Ahlatci, Mechanical and Wear Behaviors of Al-12Si-XMg Composites Reinforced with In Situ Mg2Si Particles, Mater. Des., 2011, 32(5), p 2983–2987CrossRefGoogle Scholar
  36. 36.
    F. Wang, Y. Ma, Z. Zhang, X. Cui, and Y. Jin, A Comparison of the Sliding Wear Behavior of a Hypereutectic Al-Si Alloy Prepared by Spray-Deposition and Conventional Casting Methods, Wear, 2004, 256(3–4), p 342–345CrossRefGoogle Scholar
  37. 37.
    M. Sameezadeh, M. Emamy, and H. Farhangi, Effects of Particulate Reinforcement and Heat Treatment on the Hardness and Wear Properties of AA 2024-MoSi2 Nanocomposites, Mater. Des., 2011, 32(4), p 2157–2164CrossRefGoogle Scholar
  38. 38.
    N. Hosseini, F. Karimzadeh, M.H. Abbasi, and M.H. Enayati, Tribological Properties of Al6061-Al2O3 Nanocomposite Prepared by Milling and Hot Pressing, Mater. Des., 2010, 31(10), p 4777–4785CrossRefGoogle Scholar
  39. 39.
    H.R.J. Nodooshan, W. Liu, G. Wu, A. Bahrami, M.I. Pech-Canul, and M. Emamy, Mechanical and Tribological Characterization of Al-Mg2Si Composites After Yttrium Addition and Heat Treatment, J. Mater. Eng. Perform., 2014, 23(4), p 1146–1156CrossRefGoogle Scholar
  40. 40.
    I.J. Polmear, Magnesium Alloys and Applications, Mater. Sci. Technol., 1994, 10(1), p 1–16CrossRefGoogle Scholar
  41. 41.
    Y. Birol and F. Birol, Sliding Wear Behaviour of Thixoformed AlSiCuFe Alloys, Wear, 2008, 265(11-12), p 1902–1908CrossRefGoogle Scholar
  42. 42.
    X.-F. Wu, G.-A. Zhang, and F.-F. Wu, Influence of Bi Addition on Microstructure and Dry Sliding Wear behaviors of cast Al-Mg2Si Metal Matrix Composite, Trans. Nonferrous Metals Soc. China, 2013, 23(6), p 1532–1542CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Saeed Farahany
    • 1
  • Hamidreza Ghandvar
    • 2
  • Nur Azmah Nordin
    • 2
  • Ali Ourdjini
    • 3
  1. 1.Department of Chemical and Materials EngineeringBuein Zahra Technical UniversityQazvinIran
  2. 2.Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical EngineeringUniversiti Teknologi Malaysia (UTM)Johor BahruMalaysia
  3. 3.Department of Mechanical Engineering, Faculty of EngineeringUniversity of OttawaOttawaCanada

Personalised recommendations