Journal of Materials Engineering and Performance

, Volume 26, Issue 4, pp 1792–1800 | Cite as

On the Electrochemical Behavior of PVD Ti-Coated AISI 304 Stainless Steel in Borate Buffer Solution

  • Arash Fattah-alhosseini
  • Hassan Elmkhah
  • Farid Reza Attarzadeh

This work aims at studying the electrochemical behavior of annealed pure titanium (Ti) and nano-structured (NS) Ti coating in borate buffer solutions. Cathodic arc evaporation was successfully applied to deposit NS Ti coating. Samples were characterized by means of scanning electron microscope and x-ray diffraction. Potentiodynamic polarization tests, electrochemical impedance spectroscopy, and Mott-Schottky analysis were employed to discuss the electrochemical behavior of samples thoroughly. Electrochemical measurements showed that the deposited NS Ti coating offers a superior passivity in borate buffer solutions of pH 9.0 and 9.5. Mott-Schottky analysis revealed that all passive films are of n-type semiconducting nature in these alkaline solutions and the deposition process did not alter the semiconducting type of passive films formed on samples. Additionally, this analysis showed that the NS Ti coating possessed lower levels of donor densities. Finally, all electrochemical tests showed that passive behavior of the NS Ti samples was superior, mainly due to the formation of thicker and less defective passive films.


borate buffer solutions cathodic arc evaporation (CAE) electrochemical behavior Mott-Schottky analysis nano-structured Ti coating 


  1. 1.
    W.B. Utomo, S.W. Donne, Transition Metal Inhibition of Titanium Corrosion: Electrochemical Behavior of Titanium in Alkaline Electrolyte, Meet. Abstr. MA2012-02 (2012) 2246.
  2. 2.
    S. Moon, C. Jeong, E. Byon, Y. Jeong, Electrochemical Behavior of Titanium in NaOH Solutions, in: ECS Trans., ECS, 2006: p 151–156Google Scholar
  3. 3.
    C. Liu, Q. Bi, A. Leyland, and A. Matthews, An Electrochemical Impedance Spectroscopy Study of the Corrosion Behaviour of PVD Coated Steels in 0.5 N NaCl Aqueous Solution: Part II, Corros. Sci., 2003, 45, p 1257–1273CrossRefGoogle Scholar
  4. 4.
    H.A. Jehn, Improvement of the Corrosion Resistance of PVD Hard Coating–Substrate Systems, Surf. Coatings Technol., 2000, 125, p 212–217CrossRefGoogle Scholar
  5. 5.
    G. Zhang, B. Li, B. Jiang, F. Yan, and D. Chen, Microstructure and Tribological Properties of TiN, TiC and Ti(C, N) Thin Films Prepared by Closed-Field Unbalanced Magnetron Sputtering Ion Plating, Appl. Surf. Sci., 2009, 255, p 8788–8793CrossRefGoogle Scholar
  6. 6.
    F.J. Jing, T.L. Yin, K. Yukimura, H. Sun, Y.X. Leng, and N. Huang, Titanium Film Deposition by High-Power Impulse Magnetron Sputtering: Influence of Pulse Duration, Vacuum, 2012, 86, p 2114–2119CrossRefGoogle Scholar
  7. 7.
    Q. Bao, C. Chen, D. Wang, Q. Ji, and T. Lei, Pulsed Laser Deposition and its Current Research Status in Preparing Hydroxyapatite Thin Films, Appl. Surf. Sci., 2005, 252, p 1538–1544CrossRefGoogle Scholar
  8. 8.
    N. Lin, X. Huang, X. Zhang, A. Fan, L. Qin, and B. Tang, In Vitro Assessments on Bacterial Adhesion and Corrosion Performance of TiN Coating on Ti6Al4 V Titanium Alloy Synthesized by Multi-arc Ion Plating, Appl. Surf. Sci., 2012, 258, p 7047–7051CrossRefGoogle Scholar
  9. 9.
    D.M. Devia, E. Restrepo-Parra, and P.J. Arango, Comparative Study of Titanium Carbide and Nitride Coatings Grown by Cathodic Vacuum Arc Technique, Appl. Surf. Sci., 2011, 258, p 1164–1174CrossRefGoogle Scholar
  10. 10.
    B. Podgornik, B. Zajec, N. Bay, and J. Vižintin, Application of Hard Coatings for Blanking and Piercing Tools, Wear, 2011, 270, p 850–856CrossRefGoogle Scholar
  11. 11.
    H. Elmkhah, F. Mahboubi, A. Abdollah-Zadeh, S. Ahangarani, M. Raoufi, and M.S. Mahdipoor, Size-Dependency of Corrosion Behavior for TiN Nanostructure Coatings Deposited by the PACVD Method, Mater. Lett., 2012, 82, p 105–108CrossRefGoogle Scholar
  12. 12.
    A. Bendavid and P.J. Martin, Review of Thin Film Materials Deposition by the Filtered Cathodic Vacuum Arc Process at CSIRO, J. Aust. Ceram. Soc., 2014, 50, p 86–101Google Scholar
  13. 13.
    A. Anders, A Review Comparing Cathodic Arcs and High Power Impulse Magnetron Sputtering (HiPIMS), Surf. Coat. Technol., 2014, 257, p 308–325CrossRefGoogle Scholar
  14. 14.
    M. Fenker, M. Balzer, and H. Kappl, Corrosion Protection with Hard Coatings on Steel: Past Approaches and Current Research Efforts, Surf. Coat. Technol., 2014, 257, p 182–205CrossRefGoogle Scholar
  15. 15.
    J. Creus, H. Mazille, and H. Idrissi, Porosity Evaluation of Protective Coatings Onto Steel, Through Electrochemical Techniques, Surf. Coat. Technol., 2000, 130, p 224–232CrossRefGoogle Scholar
  16. 16.
    C. Liu, G. Lin, D. Yang, and M. Qi, In Vitro Corrosion Behavior of Multilayered Ti/TiN Coating on Biomedical AISI, 316L Stainless Steel, Surf. Coatings Technol., 2006, 200, p 4011–4016CrossRefGoogle Scholar
  17. 17.
    B.J. Lin, H.T. Zhu, A.K. Tieu, and G. Triani, AFM and Ellipsometry Studies of Ultra Thin Ti Film Deposited on a Silicon Wafer, Mater. Sci. Forum, 2013, 773–774, p 616–625CrossRefGoogle Scholar
  18. 18.
    S.G. Harris, E.D. Doyle, Y.-C. Wong, P.R. Munroe, J.M. Cairney, and J.M. Long, Reducing the Macroparticle Content of Cathodic Arc Evaporated TiN Coatings, Surf. Coat. Technol., 2004, 183, p 283–294CrossRefGoogle Scholar
  19. 19.
    H. Savaloni, M. Gholipour-Shahraki, and M.A. Player, A Comparison of Different Methods for X-ray Diffraction Line Broadening Analysis of Ti and Ag UHV Deposited Thin Films: Nanostructural Dependence on Substrate Temperature and Film Thickness, J. Phys. D Appl. Phys., 2006, 39, p 2231–2247CrossRefGoogle Scholar
  20. 20.
    V. Chawla, R. Jayaganthan, A.K. Chawla, and R. Chandra, Microstructural Characterizations of Magnetron Sputtered Ti Films on Glass Substrate, J. Mater. Process. Technol., 2009, 209, p 3444–3451CrossRefGoogle Scholar
  21. 21.
    G.T. Burstein, A Hundred Years of Tafel’s Equation: 1905–2005, Corros. Sci., 2005, 47, p 2858–2870CrossRefGoogle Scholar
  22. 22.
    M.E.P. Souza, L. Lima, C.R.P. Lima, C.A.C. Zavaglia, and C.M.A. Freire, Effects of pH on the Electrochemical Behaviour of Titanium Alloys for Implant Applications, J. Mater. Sci. Mater. Med., 2009, 20, p 549–552CrossRefGoogle Scholar
  23. 23.
    L. Hamadou, L. Aïnouche, A. Kadri, S.A.A. Yahia, and N. Benbrahim, Electrochemical Impedance Spectroscopy Study of Thermally Grown Oxides Exhibiting Constant Phase Element Behaviour, Electrochim. Acta, 2013, 113, p 99–108CrossRefGoogle Scholar
  24. 24.
    A. Fattah-alhosseini, O. Imantalab, G. Ansari, The Role of Grain Refinement and Film Formation Potential on the Electrochemical Behavior of Commercial Pure Titanium in Hank’s Physiological Solution. Mater. Sci. Eng. C Mater. Biol. Appl. doi: 10.1016/j.msec.2016.10.072
  25. 25.
    A. Fattah-alhosseini and S. Vafaeian, Influence of Grain Refinement on the Electrochemical Behavior of AISI, 430 Ferritic Stainless Steel in an Alkaline Solution, Appl. Surf. Sci., 2016, 360, p 921–928CrossRefGoogle Scholar
  26. 26.
    B.A. Boukamp, Practical Application of the Kramers–Kronig Transformation on Impedance Measurements in Solid State Electrochemistry, Solid State Ionics, 1993, 62, p 131–141CrossRefGoogle Scholar
  27. 27.
    Y. Khelfaoui, M. Kerkar, A. Bali, and F. Dalard, Electrochemical Characterisation of a PVD Film of Titanium on AISI, 316L Stainless Steel, Surf. Coat. Technol., 2006, 200, p 4523–4529CrossRefGoogle Scholar
  28. 28.
    D.G. Li, J.D. Wang, D.R. Chen, and P. Liang, Influence of Passive Potential on the Electronic Property of the Passive Film Formed on Ti in 0.1 M HCl Solution During Ultrasonic Cavitation, Ultrason. Sonochem., 2016, 29, p 48–54CrossRefGoogle Scholar
  29. 29.
    D. Sazou, K. Saltidou, and M. Pagitsas, Understanding the Effect of Bromides on the Stability of Titanium Oxide Films Based on a Point Defect Model, Electrochim. Acta, 2012, 76, p 48–61CrossRefGoogle Scholar
  30. 30.
    A. Fattah-alhosseini, Passivity of AISI 321 Stainless Steel in 0.5 M H2SO4 Solution Studied by Mott–Schottky Analysis in Conjunction with the Point Defect Model. Arab. J. Chem. doi: 10.1016/j.arabjc.2012.02.015
  31. 31.
    C.-C. Wang, Y.C. Hsu, F.C. Su, S.C. Lu, and T.M. Lee, Effects of Passivation Treatments on Titanium Alloy with Nanometric Scale Roughness and Induced Changes in Fibroblast Initial Adhesion Evaluated by a Cytodetacher, J. Biomed. Mater. Res. A., 2009, 88, p 370–383CrossRefGoogle Scholar
  32. 32.
    D.D. Macdonald, The History of the Point Defect Model for the Passive State: A Brief Review of Film Growth Aspects, Electrochim. Acta, 2011, 56, p 1761–1772CrossRefGoogle Scholar
  33. 33.
    D.D. Macdonald, On the Existence of Our Metals-Based Civilization, J. Electrochem. Soc., 2006, 153, p B213CrossRefGoogle Scholar
  34. 34.
    R. Cabrera-Sierra, M.A. Pech-Canul, and I. González, The Role of Hydroxide in the Electrochemical Impedance Response of Passive Films in Corrosion Environments, J. Electrochem. Soc., 2006, 153, p B101CrossRefGoogle Scholar
  35. 35.
    P. Acevedo-Pena, J. Vazquez-Arenas, R. Cabrera-Sierra, L. Lartundo-Rojas, and I. Gonzalez, Ti Anodization in Alkaline Electrolyte: The Relationship between Transport of Defects, Film Hydration and Composition, J. Electrochem. Soc., 2013, 160, p C277–C284CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Arash Fattah-alhosseini
    • 1
  • Hassan Elmkhah
    • 1
  • Farid Reza Attarzadeh
    • 2
  1. 1.Department of Materials EngineeringBu-Ali Sina UniversityHamadanIran
  2. 2.Corrosion DivisionResearch Institute of Petroleum IndustryTehranIran

Personalised recommendations