Advertisement

Journal of Materials Engineering and Performance

, Volume 26, Issue 4, pp 1929–1937 | Cite as

Crack Initiation and Growth Behavior of Cold-Sprayed Ni Particles on IN718 Alloy

Article

Abstract

Cold spray processing parameters, governing particle velocity and impact energy, are analyzed in the present paper for pure Ni sprayed on IN718 substrates. Finite element modeling (FEM) was used to calculate the particle impact velocity and temperature as a function of gas temperature and pressure and particle density and dimensions. Experimental evidence underlines the possibility of performing repairing through cold spray thanks to the good level of adhesion achievable by employing optimal combinations of materials and spray processing parameters. In the present paper, the potential repairing of cracked superalloys sheets, by employing cold spray technology, is presented. 30° surface V-notched IN718 panels have been repaired by using pure Ni cold-sprayed powders. The bending behavior of the repaired sheets was analyzed by FEM and mechanical testing in order to compare the properties with those belonging to the unrepaired panels. Simulations and mechanical results showed a reduction in the stress intensity factor, a modification of the crack initiation site and a crack retardation in the repaired structures if compared with the unrepaired ones. The K factor was quantified; the resistance of repaired panels was increased of more than eight times in the case of repairing with Ni cold spray particles. Geometrical and mechanical properties of the coating-substrate interfaces, such as adhesion strength and residual stresses influencing the coatings behavior, were largely analyzed.

Keywords

cold spray crack behavior finite element modeling mechanical properties 

References

  1. 1.
    V.K. Champagne and P.F. Leyman, Repair of Apache Mast Support on AH64 Helicopter Using Cold Spray, Failure Prevention for System Availability, Proceedings of the 62nd Meeting of the Society for Machinery Failure Prevention Technology, May 68, 2008 (MFPT Society, Virginia Beach, VA)Google Scholar
  2. 2.
    K. Ogawa and T. Niki, Repairing of Degraded Hot Section Parts of Gas Turbines by Cold Spraying, Key Eng. Mater., 2010, 417–418, p 545–548Google Scholar
  3. 3.
    X. Wang, F. Feng, M.A. Klecka, M.D. Mordasky, J.K. Garofano, T. El-Wardany, A. Nardia, and V.K. Champagne, Characterization and Modeling of the Bonding Process in Cold Sprayadditive Manufacturing, Addit. Manuf., 2015, 8, p 149–162CrossRefGoogle Scholar
  4. 4.
    A. Sova, S. Grigoriev, A. Okunkova, and I. Smurov, Potential of Cold Gas Dynamic Spray as Additive Manufacturing Technology, Int. J. Adv. Manuf. Technol., 2013, 69, p 2269–2278CrossRefGoogle Scholar
  5. 5.
    H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51, p 4379–4394CrossRefGoogle Scholar
  6. 6.
    T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54, p 729–742CrossRefGoogle Scholar
  7. 7.
    S.V. Klinkov, V.F. Kosarev, and M. Rein, Cold Spray Deposition: Significance of Particle Impact Phenomena, Aerosp. Sci. Technol., 2005, 9, p 582–591CrossRefGoogle Scholar
  8. 8.
    L. Ajdelsztajn, B. Jodoin, and J.M. Schoenung, Synthesis and Mechanical Properties of Nanocrystalline Ni Coatings Produced by Cold Gas Dynamic Spraying, Surf. Coat. Technol., 2006, 201, p 1166–1172CrossRefGoogle Scholar
  9. 9.
    K. Spencer, V. Luzin, N. Matthews, and M.X. Zhang, Residual Stresses in Cold Spray Al coatings: The Effect of Alloying and of Process Parameters, Surf. Coat. Technol., 2012, 206, p 4249–4255CrossRefGoogle Scholar
  10. 10.
    P. Cavaliere and A. Silvell, Processing Conditions Affecting Residual Stresses and Fatigue Properties of Cold Spray Deposits, Int. J. Adv. Manuf. Technol., 2015, 81, p 1857–1862CrossRefGoogle Scholar
  11. 11.
    A.G. Gavras, B.F. Chenelle, and D.A. Lados, Effects of Microstructure on the Fatigue Crack Growth Behavior of Light Metals and Design Considerations, Rev. Mater., 2010, 15(2), p 319–329Google Scholar
  12. 12.
    R. Jones, M. Krishnapillai, K. Cairns, and N. Matthews, Application of Infrared Thermography to Study Crack Growth and Fatigue Life Extension Procedures, Fatigue Fract. Eng. Mater. Struct., 2010, 33, p 871–884CrossRefGoogle Scholar
  13. 13.
    P. Cavaliere, A. Perrone, and A. Silvello, Crystallization Evolution of Cold-Sprayed Pure Ni Coatings, J. Therm. Spray Technol., 2016, 25(6), p 1158–1167CrossRefGoogle Scholar
  14. 14.
    F.R. Menter, M. Kuntz, and R. Langtry, Ten Years of Industrial Experience with the SST Turbulence Model, Turbul. Heat Mass Transf., 2003, 4, p 625–632Google Scholar
  15. 15.
    R.R. Chromik, D. Goldbaum, J.M. Shockley, S. Yue, E. Irissou, J.G. Legoux, and N.X. Randall, Modified Ball Bond Shear Test for Determination of Adhesion Strength of cold spray Splats, Surf. Coat. Technol., 2010, 205, p 1409–1414CrossRefGoogle Scholar
  16. 16.
    A. Beakou and K. Charlet, Mechanical Properties of Interfaces within a Flax Bundle—Part II: Numerical Analysis, Int. J. Adhes. Adhes., 2013, 43, p 54–59CrossRefGoogle Scholar
  17. 17.
    ANSYS13.0.ANSYS usermanual, 2012. http://www.ansys.com/Support/DocumentationS
  18. 18.
    A. Turon, C.G. Davila, P.P. Camanho, and J. Costa, An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models, Eng. Fract. Mech., 2007, 74(10), p 1665–1682CrossRefGoogle Scholar
  19. 19.
    S. Rech, A. Trentin, S. Vezzú, E. Vedelago, J.-G. Legoux, and E. Irissou, Different Cold Spray Deposition Strategies: Single- and Multi-layers to Repair Aluminium Alloy Components’, J. Therm. Spray Technol., 2014, 23(8), p 1237–1250CrossRefGoogle Scholar
  20. 20.
    P. Cavaliere, Fatigue Properties and Crack Behavior of Ultra-Fine and Nanocrystalline Pure Metals, Int. J. Fatigue, 2009, 31, p 1476–1489CrossRefGoogle Scholar
  21. 21.
    P. Cavaliere and A. Silvello, Processing Parameters Affecting Cold Spay Coatings Performances, Int. J. Adv. Manuf. Technol., 2014, 71, p 263–277CrossRefGoogle Scholar
  22. 22.
    D. Goldbaum, J.M. Shockley, R.R. Chromik, A. Rezaeian, S. Yue, J.G. Legoux, and E. Irissou, The Effect of Deposition Conditions on Adhesion Strength of Ti and Ti6Al4V Cold Spray Splats, J. Therm. Spray Technol., 2012, 21(2), p 288–303CrossRefGoogle Scholar
  23. 23.
    P.H. Gao, C.-J. Li, G.J. Yang, Y.G. Li, and C.X. Li, Influence of Substrate Hardness on Deposition Behavior of Single Porous WC-12Co Particle in Cold Spraying, Surf. Coat. Technol., 2008, 203, p 384–390CrossRefGoogle Scholar
  24. 24.
    R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, and S. Sampath, Impact of High Velocity Cold Spray Particles, J. Therm. Spray Technol., 1999, 8, p 559–564CrossRefGoogle Scholar
  25. 25.
    J. Henao, A. Concustell, I.G. Cano, N. Cinca, S. Dosta, and J.M. Guilemany, Influence of Cold Gas Spray Process Conditions on the Microstructure of Fe-Based Amorphous Coatings, J. Alloy. Compd., 2015, 622, p 995–999CrossRefGoogle Scholar
  26. 26.
    S. Yoon, C. Lee, H. Choi, H. Kim, and J. Bae, Impacting Behavior of Bulk Metallic Glass Powder at an Abnormally High Strain Rate During Kinetic Spraying, Mater. Sci. Eng. A, 2007, 449–451, p 911–915CrossRefGoogle Scholar
  27. 27.
    S. Yoon, J.-J. Kim, and C. Lee, Deposition Behavior of Bulk Amorphous NiTiZrSiSn According to the Kinetic and Thermal Energy Levels in the Kinetic Spraying Process, Surf. Coat. Technol., 2006, 200, p 6022–6029CrossRefGoogle Scholar
  28. 28.
    X.-T. Luo, Y.-J. Li, C.-X. Li, G.-J. Yang, and C.-J. Li, Effect of Spray Conditions on Deposition Behavior and Microstructure of Cold Sprayed Ni Coatings Sprayed with a Porous Electrolytic Ni Powder, Surf. Coat. Technol., 2016, 289, p 85–93CrossRefGoogle Scholar
  29. 29.
    Q. Wang, N. Birbilis, and M.X. Zhang, On the Formation of a Diffusion Bond from Cold-Spray Coatings, Metall. Mater. Trans. A, 2012, A43(5), p 1395–1399CrossRefGoogle Scholar
  30. 30.
    H.X. Hu, S.L. Jiang, Y.S. Tao, T.Y. Xiong, and Y.G. Zheng, Cavitation Erosion and Jet Impingement Erosion Mechanism of Cold Sprayed Ni–Al2O3 coating, Nucl. Eng. Des., 2011, 241, p 4929–4937CrossRefGoogle Scholar
  31. 31.
    R. Ghelichi, S. Bagherifard, D. Mac Donald, M. Brochu, H. Jahed, B. Jodoin, and M. Guagliano, Fatigue Strength of Al Alloy Cold Sprayed with Nanocrystalline Powders, Int. J. Fatigue, 2014, 61, p 51–57CrossRefGoogle Scholar
  32. 32.
    S. Rech, A. Trentin, S. Vezzú, J.G. Legoux, E. Irissou, and M. Guagliano, Influence of Pre-heated Al 6061 Substrate Temperature on the Residual Stresses of Multipass Al Coatings Deposited by Cold Spray, J. Therm. Spray Technol., 2011, 20(1–2), p 243–251CrossRefGoogle Scholar
  33. 33.
    M. Saleh, V. Luzin, and K. Spencer, Analysis of the Residual Stress and Bonding Mechanism in the Cold Spray Technique Using Experimental and Numerical Methods, Surf. Coat. Technol., 2014, 252, p 15–28CrossRefGoogle Scholar
  34. 34.
    W. Han, X. Meng, J. Zhao, and J. Zhang, Fracture Behavior of 304 Stainless Steel Coatings by Cold Gas Dynamic Spray, Acta Metall. Sin., 2011, 24(3), p 249–254Google Scholar
  35. 35.
    F. Kroupa, Nonlinear Behavior in Compression and Tension of Thermally Sprayed Ceramic coatings, J. Therm. Spray Technol., 2007, 16, p 84–95CrossRefGoogle Scholar
  36. 36.
    A. Moridi, S.M. Hassani-Gangaraj, S. Vezzú, L. Trško, and M. Guagliano, Fatigue Behavior of Cold Spray Coatings: The Effect of Conventional and Severe Shot Peening as Pre-/Post-treatment, Surf. Coat. Technol., 2015, 283, p 247–254CrossRefGoogle Scholar
  37. 37.
    B. Al-Mangour, R. Dallala, F. Zhim, R. Mongrain, and S. Yue, Fatigue Behavior of Annealed Cold-Sprayed 316L Stainless Steel Coating for Biomedical Applications, Mater. Lett., 2013, 91, p 352–355CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  1. 1.Department of Innovation EngineeringUniversity of SalentoLecceItaly

Personalised recommendations