Advertisement

Journal of Materials Engineering and Performance

, Volume 26, Issue 4, pp 1634–1646 | Cite as

Facile Electrochemical Method to Improve Surface Features of Pure Copper in Dilute Basic Solutions

  • Arash Fattah-alhosseini
  • Omid Imantalab
  • Farid Reza Attarzadeh
  • Navid Attarzadeh
Article
  • 66 Downloads

Abstract

Electrochemical properties of coarse and nano-grained pure copper can be modified and improved effectively through applying cyclic potentiodynamic passivation (CPP) treatment. It is found that the success of this method depends up to a large extent on grain size. Eight passes of accumulative roll bonding processing are successfully used at room temperature to produce nano-grained pure copper. Transmission electron microscopy image and selected area diffraction pattern both attest to the occurrence of intense grain refinement under the influence of aforementioned process, in which an average grain size <100 nm is attainable. Using several electrochemical characterization methods reveals that CPP treatment fully exploits potentials of nano-grained samples to form a dense and thick protective passive film. It is speculated that high-quality passive layers relate to the presence of high-density structural defects on the surface of nano-grained samples.

Keywords

cyclic potentiodynamic passivation electrochemical behavior Mott–Schottky nano-grained pure copper 

References

  1. 1.
    H.S. Khatak and B. Raj, Corrosion of Austenitic Stainless Steels: Mechanism, Mitigation and Monitoring, Elsevier, Amsterdam, 2002CrossRefGoogle Scholar
  2. 2.
    X. Liu, P. Chu, and C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng. R Rep., 2004, 47, p 49–121CrossRefGoogle Scholar
  3. 3.
    A. Shahryari, F. Azari, H. Vali, and S. Omanovic, The Positive Influence of Electrochemical Cyclic Potentiodynamic Passivation (CPP) of a SS316LS Surface on Its Response to Fibronectin and Pre-Osteoblasts, Phys. Chem. Chem. Phys., 2009, 11, p 6218–6224CrossRefGoogle Scholar
  4. 4.
    A. Shahryari, S. Omanovic, and J.A. Szpunar, Enhancement of Biocompatibility of 316LVM Stainless Steel by Cyclic Potentiodynamic Passivation, J. Biomed. Mater. Res. A, 2009, 89, p 1049–1062CrossRefGoogle Scholar
  5. 5.
    A. Shahryari, W. Kamal, and S. Omanovic, The Effect of Surface Roughness on the Efficiency of the Cyclic Potentiodynamic Passivation (CPP) Method in the Improvement of General and Pitting Corrosion Resistance of 316LVM Stainless Steel, Mater. Lett., 2008, 62, p 3906–3909CrossRefGoogle Scholar
  6. 6.
    M. Vuković, The Formation and Growth of Hydrous Oxide Film on Stainless Steel in Alkaline Solution by Potential Cycling, Corros. Sci., 1995, 37, p 111–120CrossRefGoogle Scholar
  7. 7.
    A.L.M. Costa, A.C.C. Reis, L. Kestens, and M.S. Andrade, Ultra Grain Refinement and Hardening of IF-Steel During Accumulative Roll-Bonding, Mater. Sci. Eng. A, 2005, 406, p 279–285CrossRefGoogle Scholar
  8. 8.
    M. Eizadjou, H.D. Manesh, and K. Janghorban, Microstructure and Mechanical Properties of Ultra-Fine Grains (UFGs) Aluminum Strips Produced by ARB Process, J. Alloys Compd., 2009, 474, p 406–415CrossRefGoogle Scholar
  9. 9.
    R. Jamaati and M.R. Toroghinejad, Effect of Stacking Fault Energy on Mechanical Properties of Nanostructured FCC Materials Processed by the ARB Process, Mater. Sci. Eng. A, 2014, 606, p 443–450CrossRefGoogle Scholar
  10. 10.
    A. Rezaee-Bazzaz, S. Ahmadian, and H. Reihani, Modeling of Microstructure and Mechanical Behavior of Ultra Fine Grained Aluminum Produced by Accumulative Roll-Bonding, Mater. Des., 2011, 32, p 4580–4585CrossRefGoogle Scholar
  11. 11.
    F. Salimyanfard, M.R. Toroghinejad, F. Ashrafizadeh, M. Hoseini, and J.A. Szpunar, Investigation of Texture and Mechanical Properties of Copper Processed by New Route of Equal Channel Angular Pressing, Mater. Des., 2013, 44, p 374–381CrossRefGoogle Scholar
  12. 12.
    M.R. Toroghinejad, R. Jamaati, J. Dutkiewicz, and J.A. Szpunar, Investigation of Nanostructured Aluminum/Copper Composite Produced by Accumulative Roll Bonding and Folding Process, Mater. Des., 2013, 51, p 274–279CrossRefGoogle Scholar
  13. 13.
    L.S. Toth and C. Gu, Ultrafine-Grain Metals by Severe Plastic Deformation, Mater. Charact., 2014, 92, p 1–14CrossRefGoogle Scholar
  14. 14.
    M. Karimi and M.R. Toroghinejad, An Alternative Method for Manufacturing High-Strength CP Ti–SiC Composites by Accumulative Roll Bonding Process, Mater. Des., 2014, 59, p 494–501CrossRefGoogle Scholar
  15. 15.
    M. Karimi, M.R. Toroghinejad, and K. Farmanesh, Multi-Response Optimization on the Annealing of Accumulative Roll Bonded Monolithic Ti and Ti–SiCp Composites, Mater. Des., 2015, 65, p 34–41CrossRefGoogle Scholar
  16. 16.
    A. Fattah-alhosseini and S. Vafaeian, Comparison of Electrochemical Behavior Between Coarse-Grained and Fine-Grained AISI, 430 Ferritic Stainless Steel by Mott–Schottky Analysis and EIS Measurements, J. Alloys Compd., 2015, 639, p 301–307CrossRefGoogle Scholar
  17. 17.
    K.D. Ralston and N. Birbilis, Effect of Grain Size on Corrosion: A Review, Corrosion, 2010, 66, p 075005–075005 – 13CrossRefGoogle Scholar
  18. 18.
    M. Pérez Sánchez, M. Barrera, S. González, R.M. Souto, R.C. Salvarezza, and A.J. Arvia, Electrochemical Behaviour of Copper in Aqueous Moderate Alkaline Media, Containing Sodium Carbonate and Bicarbonate, and Sodium Perchlorate, Electrochim. Acta, 1990, 35, p 1337–1343CrossRefGoogle Scholar
  19. 19.
    R.M. Souto, S. González, R.C. Salvarezza, and A.J. Arvia, Kinetics of Copper Passivation and Pitting Corrosion in Na2SO4 Containing Dilute NaOH Aqueous Solution, Electrochim. Acta, 1994, 39, p 2619–2628CrossRefGoogle Scholar
  20. 20.
    M.M. Laz, R.M. Souto, S. González, R.C. Salvarezza, and A.J. Arvia, The Formation of Anodic Layers on Annealed Copper Surfaces in Phosphate-Containing Solutions at Different pH, Electrochim. Acta, 1992, 37, p 655–663CrossRefGoogle Scholar
  21. 21.
    Y. Ling, M.L. Taylor, S. Sharifiasl, and D.D. Macdonald, The Semiconducting Properties and Impedance Analysis of Passive Films on Copper in Anoxic Sulfide-Containing Solutions from the Viewpoint of the Point Defect Model, ECS Trans., 2013, 50, p 53–67CrossRefGoogle Scholar
  22. 22.
    H.D. Speckmann, S. Haupt, and H.-H. Strehblow, A Quantitative Surface Analytical Study of Electrochemically-Formed Copper Oxides by XPS and x-ray-Induced Auger Spectroscopy, Surf. Interface Anal., 1988, 11, p 148–155CrossRefGoogle Scholar
  23. 23.
    W. Kautek, M. Geub, M. Sahre, P. Zhao, and S. Mirwald, Multi-Method Analysis Of The Metal/Electrolyte Interface: Scanning Force Microscopy (SFM), Quartz Microbalance Measurements (QMB), Fourier Transform Infrared Spectroscopy (FTIR) and Grazing Incidence x-ray Diffractometry (GIXD) at a Polycrystalline Copper, Surf. Interface Anal., 1997, 25, p 548–560CrossRefGoogle Scholar
  24. 24.
    A. Nikfahm, I. Danaee, A. Ashrafi, and M.R. Toroghinejad, Corrosion Behavior of Ultra Fine Grain Copper Produced by Accumulative Roll Bonding Process, Trans. Indian Inst. Met., 2013, 67, p 115–121CrossRefGoogle Scholar
  25. 25.
    A. Nikfahm, I. Danaee, A. Ashrafi, and M.R. Toroghinejad, Effect of Grain Size Changes on Corrosion Behavior of Copper Produced by Accumulative Roll Bonding Process, Mater. Res., 2013, 16, p 1379–1386CrossRefGoogle Scholar
  26. 26.
    A. Fattah-alhosseini and O. Imantalab, Effect of Accumulative Roll Bonding Process on the Electrochemical Behavior of Pure Copper, J. Alloys Compd., 2015, 632, p 48–52CrossRefGoogle Scholar
  27. 27.
    O. Imantalab and A. Fattah-alhosseini, Electrochemical and Passive Behaviors of Pure Copper Fabricated by Accumulative Roll-Bonding (ARB) Process, J. Mater. Eng. Perform., 2015, 24, p 2579–2585CrossRefGoogle Scholar
  28. 28.
    A. Fattah-alhosseini, O. Imantalab, Y. Mazaheri, and M.K. Keshavarz, Microstructural Evolution, Mechanical Properties, and Strain Hardening Behavior of Ultrafine Grained Commercial Pure Copper During the Accumulative Roll Bonding Process, Mater. Sci. Eng. A, 2016, 650, p 8–14CrossRefGoogle Scholar
  29. 29.
    M. Shaarbaf and M.R. Toroghinejad, Nano-Grained Copper Strip Produced by Accumulative Roll Bonding Process, Mater. Sci. Eng. A, 2008, 473, p 28–33CrossRefGoogle Scholar
  30. 30.
    Z. Wu, J. Chen, N. Piao, C. Sun, W. Hassan, X. Zhang et al., Electrochemical Corrosion Behavior of Bulk Ultra-Fine Grained Fe-Ni-Cr Alloy, Trans. Nonferrous Met. Soc. China, 2014, 24, p 1989–1994CrossRefGoogle Scholar
  31. 31.
    H. Maleki-Ghaleh, K. Hajizadeh, A. Hadjizadeh, M.S. Shakeri, S. Ghobadi Alamdari, S. Masoudfar et al., Electrochemical and Cellular Behavior of Ultrafine-Grained Titanium In Vitro, Mater. Sci. Eng. C Mater. Biol. Appl., 2014, 39, p 299–304CrossRefGoogle Scholar
  32. 32.
    C. Escrivà-Cerdán, E. Blasco-Tamarit, D.M. García-García, J. García-Antón, and A. Guenbour, Effect of Potential Formation on the Electrochemical Behaviour of a Highly Alloyed Austenitic Stainless Steel in Contaminated Phosphoric Acid at Different Temperatures, Electrochim. Acta, 2012, 80, p 248–256CrossRefGoogle Scholar
  33. 33.
    L. Hamadou, L. Aïnouche, A. Kadri, S.A.A. Yahia, and N. Benbrahim, Electrochemical Impedance Spectroscopy Study of Thermally Grown Oxides Exhibiting Constant Phase Element Behaviour, Electrochim. Acta, 2013, 113, p 99–108CrossRefGoogle Scholar
  34. 34.
    C. Escrivà-Cerdán, E. Blasco-Tamarit, D.M. García-García, J. García-Antón, R. Akid, and J. Walton, Effect of Temperature on Passive Film Formation of UNS N08031 Cr-Ni Alloy in Phosphoric Acid Contaminated with Different Aggressive Anions, Electrochim. Acta, 2013, 111, p 552–561CrossRefGoogle Scholar
  35. 35.
    J.E. González and J. Mirza-Rosca, Study of the Corrosion Behavior of Titanium And Some of Its Alloys for Biomedical and Dental Implant Applications, J. Electroanal. Chem., 1999, 471, p 109–115CrossRefGoogle Scholar
  36. 36.
    Q.J. Wang, M.S. Zheng, and J.W. Zhu, Semi-Conductive Properties of Passive Films Formed on Copper in Chromate Solutions, Thin Solid Films, 2009, 517, p 1995–1999CrossRefGoogle Scholar
  37. 37.
    B. Zhang, Y. Li, and F. Wang, Electrochemical Corrosion Behaviour of Microcrystalline Aluminium in Acidic Solutions, Corros. Sci., 2007, 49, p 2071–2082CrossRefGoogle Scholar
  38. 38.
    H. Wu, Y. Wang, Q. Zhong, M. Sheng, H. Du, and Z. Li, The semi-Conductor Property and Corrosion Resistance of Passive Film on Electroplated Ni and Cu-Ni Alloys, J. Electroanal. Chem., 2011, 663, p 59–66CrossRefGoogle Scholar
  39. 39.
    A. Fattah-alhosseini and O. Imantalab, Passivation Behavior of Ultra-Fine Grained Pure Copper Fabricated by Accumulative Roll Bonding (ARB) Process, Metall. Mater. Trans. A, 2016, 47A, p 572–580CrossRefGoogle Scholar
  40. 40.
    O. Imantalab and A. Fattah-alhosseini, Effect of Accumulative Roll Bonding (ARB) Process on the Electrochemical Behavior of Pure Copper in 0.01 M KOH Solution, Anal. Bioanal. Electrochem., 2015, 7(2), p 210–219Google Scholar
  41. 41.
    O. Imantalab, A. Fattah-alhosseini, Y. Mazaheri, and M.K. Keshavarz, Electrochemical Behavior of Pure Copper in Phosphate Buffer Solutions: A Comparison Between Micro- and Nano-Grained Copper, J. Mater. Eng. Perform., 2016, 25, p 697–703CrossRefGoogle Scholar
  42. 42.
    O. Imantalab, A. Fattah-alhosseini, Y. Mazaheri, and M.K. Keshavarz, Strengthening Mechanisms and Electrochemical Behavior of Ultrafine Grained Commercial Pure Copper Fabricated by Accumulative Roll Bonding, Metall. Mater. Trans. A, 2016, 47A, p 3684–3693CrossRefGoogle Scholar
  43. 43.
    Q.J. Zhong, YuL Bin, Y. Xiao, Y. Wang, Q.Y. Zhou, and Q.D. Zhong, The Effect of Grain Size and Cl Concentration on the Passive Behavior of Cu in Borate Buffer Solution, Adv. Mater. Res., 2013, 785–786, p 928–932CrossRefGoogle Scholar
  44. 44.
    A.V. Syugaev, E.A. Pechina, N.V. Lyalina, S.F. Lomaeva, M.V. Mar’in, and S.M. Reshetnikov, The Influence of the Ultrafine-Grained Structure on Passivation of Copper, Prot. Met. Phys. Chem. Surfaces, 2014, 50, p 841–845CrossRefGoogle Scholar
  45. 45.
    H. Miyamoto, K. Harada, T. Mimaki, A. Vinogradov, and S. Hashimoto, Corrosion of Ultra-Fine Grained Copper Fabricated by Equal-Channel Angular Pressing, Corros. Sci., 2008, 50, p 1215–1220CrossRefGoogle Scholar
  46. 46.
    J.K. Yu, E.H. Han, L. Lu, X.J. Wei, and M. Leung, Corrosion Behaviors of Nanocrystalline and Conventional Polycrystalline Copper, J. Mater. Sci., 2005, 40, p 1019–1022CrossRefGoogle Scholar
  47. 47.
    R.J. Hellmig, M. Janecek, B. Hadzima, O.V. Gendelman, M. Shapiro, X. Molodova et al., A Portrait of Copper Processed by Equal Channel Angular Pressing, Mater. Trans., 2008, 49, p 31–37CrossRefGoogle Scholar
  48. 48.
    X.X. Xu, F.L. Nie, J.X. Zhang, W. Zheng, Y.F. Zheng, C. Hu et al., Corrosion and Ion Release Behavior of Ultra-Fine Grained Bulk Pure Copper Fabricated by ECAP in Hanks Solution as Potential Biomaterial for Contraception, Mater. Lett., 2010, 64, p 524–527CrossRefGoogle Scholar
  49. 49.
    A. Fattah-alhosseini and S. Vafaeian, Influence of Grain Refinement on the Electrochemical Behavior of AISI, 430 Ferritic Stainless Steel in an Alkaline Solution, Appl. Surf. Sci., 2016, 360, p 921–928CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Arash Fattah-alhosseini
    • 1
  • Omid Imantalab
    • 1
  • Farid Reza Attarzadeh
    • 2
  • Navid Attarzadeh
    • 3
  1. 1.Department of Materials EngineeringBu-Ali Sina UniversityHamedanIran
  2. 2.Corrosion DivisionResearch Institute of Petroleum IndustryTehranIran
  3. 3.Chemical and Materials Engineering DepartmentNew Mexico State UniversityLas CrucesUSA

Personalised recommendations