Advertisement

Journal of Materials Engineering and Performance

, Volume 26, Issue 4, pp 1947–1957 | Cite as

Influence of SMAT Parameters on Microstructural and Mechanical Properties of Al-Mg-Si Alloy AA 6061

  • S. Anand Kumar
  • P. Satish Kumar
  • S. Ganesh Sundara Raman
  • T. S. N. Sankara Narayanan
Article
  • 213 Downloads

Abstract

In the present work, the influence of surface mechanical attrition treatment (SMAT) parameters on the microstructural and mechanical properties of an aluminum-magnesium-silicon alloy AA 6061 was studied using design of experiment technique. Balls of three different diameters were used, and SMAT was done for three different durations. The microstructural features of the surface layer fabricated by SMAT were characterized by cross-sectional scanning electron microscopic observations, x-ray diffraction technique and transmission electron microscopy. The microindentation hardness, nanoindentation hardness and surface roughness were determined. Due to SMAT, nanocrystallites formed on the surface and near-surface regions, and hardness and surface roughness increased. The ball diameter was the most influencing SMAT parameter compared to the treatment duration. However, interaction between ball diameter and treatment duration could not be ignored. Regression equations were developed relating the process parameters to the surface properties. The ball diameter and treatment duration could thus be properly selected as per the required values of roughness and/or the hardness.

Keywords

design of experiment hardness nanoindentation technique nanostructured surface SMAT surface roughness TEM 

References

  1. 1.
    K. Lu and J. Lu, Nanostructured Surface Layer on Metallic Materials Induced by Surface Mechanical Attrition Treatment, Mater. Sci. Eng., A, 2004, 375, p 38–45CrossRefGoogle Scholar
  2. 2.
    H. Gleiter, Nanostructured Materials: Basic Concepts and Microstructure, Acta Mater., 2000, 48, p 1–29CrossRefGoogle Scholar
  3. 3.
    K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Mechanical Behavior of Nanocrystalline Metals and Alloys, Acta Mater., 2003, 51, p 5743–5774CrossRefGoogle Scholar
  4. 4.
    J.L. Liu, M. Umemoto, Y. Todaka, and K. Tsuchiya, Formation of a Nanocrystalline Surface Layer on Steels by Air Blast Shot Peening, J. Mater. Sci., 2007, 42, p 7716–7720CrossRefGoogle Scholar
  5. 5.
    K. Dai, J. Villegas, Z. Stone, and L. Shaw, Finite Element Modeling of the Surface Roughness of 5052 Al Alloy Subjected to a Surface Severe Plastic Deformation Process, Acta Mater., 2004, 52, p 5771–5782CrossRefGoogle Scholar
  6. 6.
    G. Liu, J. Lu, and K. Lu, Surface Nanocrystallization of 316L Stainless Steel Induced by Ultrasonic Shot Peening, Mater. Sci. Eng., A, 2000, 286, p 91–95CrossRefGoogle Scholar
  7. 7.
    X. Wu, N. Tao, Y. Hong, B. Xu, J. Lu, and K. Lu, Microstructure and Evolution of Mechanically-Induced Ultrafine Grain in Surface Layer of Al-Alloy Subjected to USSP, Acta Mater., 2002, 50, p 2075–2084CrossRefGoogle Scholar
  8. 8.
    H.W. Chang, P.M. Kelly, Y.N. Shi, and M.X. Zhang, Effect of Eutectic Si on Surface Nanocrystallization of Al–Si Alloys by Surface Mechanical Attrition Treatment, Mater. Sci. Eng., A, 2011, 530, p 304–314CrossRefGoogle Scholar
  9. 9.
    H.W. Chang, P.M. Kelly, Y.-N. Shi, and M.-X. Zhang, Thermal Stability of Nanocrystallized Surface Produced by Surface Mechanical Attrition Treatment in Aluminum Alloys, Surf. Coat. Technol., 2012, 206, p 3970–3980CrossRefGoogle Scholar
  10. 10.
    Y. Liu, B. Jin, and J. Lu, Mechanical Properties and Thermal Stability of Nanocrystallized Pure Aluminum Produced by Surface Mechanical Attrition Treatment, Mater. Sci. Eng., A, 2015, 636, p 446–451CrossRefGoogle Scholar
  11. 11.
    L. Wen, Y. Wang, Y. Zhou, L. Guo, and J. Ouyang, Iron-Rich Layer Introduced by SMAT and Its Effect on Corrosion Resistance and Wear Behavior of 2024 Al Alloy, Mater. Chem. Phys., 2011, 126, p 301–309CrossRefGoogle Scholar
  12. 12.
    L. Wen, Y. Wang, Y. Zhou, L. Guo, and J. Ouyang, Microstructure and Corrosion Resistance of Modified 2024 Al Alloy Using Surface Mechanical Attrition Treatment Combined with Microarc Oxidation Process, Corros. Sci., 2011, 53, p 473–480CrossRefGoogle Scholar
  13. 13.
    B. Arifvianto, Suyitno, M. Mahardika, P. Dewo, P.T. Iswanto, and U.A. Salim, Effect of Surface Mechanical Attrition Treatment (SMAT) on Microhardness, Surface Roughness and Wettability of AISI 316L, Mater. Chem. Phys., 2011, 125, p 418–426CrossRefGoogle Scholar
  14. 14.
    T. Roland, D. Retraint, K. Lu, and J. Lu, Fatigue Life Improvement Through Surface Nanostructuring of Stainless Steel by Means of Surface Mechanical Attrition Treatment, Scr. Mater., 2006, 54, p 1949–1954CrossRefGoogle Scholar
  15. 15.
    N.R. Tao, M.L. Sui, J. Lu, and K. Lu, Surface Nanocrystallization of Iron Induced by Ultrasonic Shot Peening, Nano Mater., 1999, 11, p 433–440CrossRefGoogle Scholar
  16. 16.
    X. Yong, G. Liu, and K. Lu, Characterization and Properties of Nanostructured Surface Layer in a Low Carbon Steel Subjected to Surface Mechanical Attrition, J. Mater. Sci. Technol., 2003, 19, p 1–4CrossRefGoogle Scholar
  17. 17.
    K.Y. Zhu, A. Vassel, F. Brisset, K. Lu, and J. Lu, Nanostructure Formation Mechanism of α-Titanium Using SMAT, Acta Mater., 2004, 52, p 4101–4110CrossRefGoogle Scholar
  18. 18.
    Y.S. Zhang and Z. Han, Fretting Wear Behavior of Nanocrystalline Surface Layer of Pure Copper Under Oil Lubrication, Tribol. Lett., 2007, 27, p 53–59CrossRefGoogle Scholar
  19. 19.
    S. Anand Kumar, S. Ganesh Sundara Raman, T.S.N. Sankara Narayanan, and R. Gnanamoorthy, Influence of Surface Mechanical Attrition Treatment on Fretting Wear Behavior of Ti-6Al-4V, Adv. Mater. Res., 2012, 463–464, p 316–320CrossRefGoogle Scholar
  20. 20.
    S. Anand Kumar, S. Ganesh Sundara Raman, T.S.N. Sankara Narayanan, and R. Gnanamoorthy, Fretting Wear Behaviour of Surface Mechanical Attrition Treated Alloy 718, Surf. Coat. Technol., 2012, 206, p 4425–4432CrossRefGoogle Scholar
  21. 21.
    Y.S. Zhang, K. Wang, Z. Han, and G. Liu, Dry Sliding Wear Behavior of Copper with Nano-scaled Twins, Wear, 2007, 262, p 1463–1470CrossRefGoogle Scholar
  22. 22.
    S. Anand Kumar, S. Ganesh Sundara Raman, and T.S.N. Sankara Narayanan, Influence of Surface Mechanical Attrition Treatment Duration on Fatigue Lives of Ti-6Al-4V, Trans. Indian Inst. Met., 2014, 67(1), p 137–141CrossRefGoogle Scholar
  23. 23.
    S. Anand Kumar, S. Ganesh Sundara Raman, and T.S.N. Sankara Narayanan, Effect of Surface Mechanical Attrition Treatment on Fatigue Lives of Alloy 718, Trans. Indian Inst. Met., 2012, 65, p 473–477CrossRefGoogle Scholar
  24. 24.
    T. Balusamy, S. Kumar, and T.S.N. Sankara Narayanan, Effect of Surface Nanocrystallization on the Corrosion Behavior of AISI, 409 Stainless Steel, Corros. Sci., 2010, 52, p 3826–3834CrossRefGoogle Scholar
  25. 25.
    P.J. Ross, Taguchi Techniques for Quality Engineering, McGraw-Hill, New York, 1996Google Scholar
  26. 26.
    L. Wagner, Mechanical Surface Treatments on Titanium, Aluminum and Magnesium Alloys, Mater. Sci. Eng., A, 1999, 263, p 210–216CrossRefGoogle Scholar
  27. 27.
    Y. Fu, J. Wei, and A.W. Batchelor, Some Considerations on the Mitigation of Fretting Damage by the Application of Surface-Modification Technologies, J. Mater. Process. Technol., 2000, 99, p 231–245CrossRefGoogle Scholar
  28. 28.
    C. Colombie, Y. Berthier, A. Floquet, L. Vincent, and M. Godet, Fretting Load-Carrying Capacity of Wear Debris, ASME J. Tribol., 1984, 106, p 185–194CrossRefGoogle Scholar
  29. 29.
    R.K. Roy, A Primer on Taguchi Method, Van Noshtrand Reinhold Int. Co. Ltd, New York, 1990Google Scholar
  30. 30.
    H. Saitoh, T. Ochi, M. Kubota, Formation of surface nanocrystalline structure in steels by air blast shot peening, in Proceedings of the 10th International Conference on Shot Peening, (2008), p. 488–493Google Scholar
  31. 31.
    B.N. Mordyuk and G.I. Prokopenko, Ultrasonic Impact Peening for the Surface Properties’ Management, J. Sound Vib., 2007, 308, p 855–866CrossRefGoogle Scholar
  32. 32.
    V.S. Sarma, J. Wang, W.W. Jian, A. Kauffmann, H. Conrad, J. Freudenberger, and Y.T. Zhu, Role of Stacking Fault Energy in Strengthening Due to Cryo-Deformation of FCC Metals, Mater. Sci. Eng., A, 2010, 527, p 7624–7630CrossRefGoogle Scholar
  33. 33.
    D.E. Stegall, M.A. Mamun, and A.A. Elmustafa, The Role of Stacking Fault Energy on the Indentation Size Effect of FCC Pure Metals and Alloys, Mater. Res. Soc. Symp. Proc., 2012, 1424, p 7–12Google Scholar
  34. 34.
    B.D. Cullity, Elements of x-ray Diffraction, Addison Wesley, Massachusetts, 1978Google Scholar
  35. 35.
    H. Chen, Y.L. Yao, J.W. Kysar, I.C. Noyan, and Y. Wang, Fourier Analysis of x-ray Micro-diffraction Profiles to Characterize Laser Shock Peened Metals, Int. J. Solids Struct., 2005, 42, p 3471–3485CrossRefGoogle Scholar
  36. 36.
    S. Anand Kumar, R. Sundar, S. Ganesh Sundara Raman, H. Kumar, R. Gnanamoorthy, R. Kaul, K. Ranganathan, S.M. Oak, and L.M. Kukreja, Fretting Wear Behavior of Laser Peened Ti-6Al-4V, Tribol. Trans., 2012, 55, p 615–623CrossRefGoogle Scholar
  37. 37.
    L. Zhu, B. Xu, H. Wang, and C. Wang, Effect of Residual Stress on the Nanoindentation Response of (100) Copper Single Crystal, Mater. Chem. Phys., 2012, 136, p 561–565CrossRefGoogle Scholar
  38. 38.
    A.C. Fischer-Cripps, Nanoindentation, Springer, New York, 2011CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • S. Anand Kumar
    • 1
    • 2
  • P. Satish Kumar
    • 3
  • S. Ganesh Sundara Raman
    • 4
  • T. S. N. Sankara Narayanan
    • 5
  1. 1.Department of Mechanical Engineering, School of EngineeringDayananda Sagar UniversityBengaluruIndia
  2. 2.Department of Mechanical EngineeringACS College of EngineeringBengaluruIndia
  3. 3.Quality Assurance DivisionNuclear Fuel ComplexHyderabadIndia
  4. 4.Department of Metallurgical and Materials EngineeringIIT MadrasChennaiIndia
  5. 5.Department of Dental BiomaterialsChonbuk National UniversityChonjuSouth Korea

Personalised recommendations