Journal of Materials Engineering and Performance

, Volume 26, Issue 4, pp 1908–1919 | Cite as

Nanostructured Al/SiC-Graphite Composites Produced by Accumulative Roll Bonding: Role of Graphite on Microstructure, Wear and Tensile Behavior

  • M. Reihanian
  • S. Fayezipour
  • S. M. Lari Baghal


Nanostructured Al/SiC composite was fabricated by accumulative roll bonding (ARB). The effect of Gr, as the soft and second reinforcing particle, on the microstructure and deformation behavior of Al/SiC composite was examined. After eight ARB cycles, a homogeneous ultra-fine grained structure with the average grain size of about 710 nm was obtained in the Al/SiC composite. Results showed that Gr could not affect the particle distribution. However, the bonding quality between the layers reduced and the mechanical properties of the composite deteriorated considerably with increasing the Gr content. Compared with the Gr-free composite, the Al/SiC-Gr hybrid composite with the highest Gr content exhibited the lowest bonding quality and the lowest tensile strength. Tensile fracture surface of the composites showed that the number of delaminated layers was increased by increasing the Gr content. The best wear resistance was obtained in the composite whose powder mixture contained 80 SiC and 20 Gr (in wt.%).


accumulative roll bonding (ARB) metal matrix composite (MMC) microstructure tensile behavior wear 



Financial support provided by Shahid Chamran University of Ahvaz (through the Grant No. 94-3-02-31579) is gratefully appreciated. Authors would like to thank E. Bagherpour for the preparation of TEM samples and taking TEM images in Metallic Materials Science Laboratory of Doshisha University, Japan.


  1. 1.
    P.S. Bains, S.S. Sidhu, and H.S. Payal, Fabrication and Machining of Metal Matrix Composites: A Review, Mater. Manuf. Processes, 2016, 31(5), p 553–573CrossRefGoogle Scholar
  2. 2.
    V.K. Lindroos and M.J. Talvitie, Recent Advances in Metal Matrix Composites, J. Mater. Process. Technol., 1995, 53(1-2), p 273–284CrossRefGoogle Scholar
  3. 3.
    J. Singh and A. Chauhan, Overview of Wear Performance of Aluminium Matrix Composites Reinforced with Ceramic Materials Under the Influence of Controllable Variables, Ceram. Int., 2016, 42(1, Part A), p 56–81CrossRefGoogle Scholar
  4. 4.
    S. Basavarajappa, G. Chandramohan, K. Mukund, M. Ashwin, and M. Prabu, Dry Sliding Wear Behavior of Al 2219/SiCp-Gr Hybrid Metal Matrix Composites, J. Mater. Eng. Perform., 2006, 15(6), p 668–674CrossRefGoogle Scholar
  5. 5.
    C.S. Lee, Y.H. Kim, K.S. Han, and T. Lim, Wear Behaviour of Aluminium Matrix Composite Materials, J. Mater. Sci., 1992, 27(3), p 793–800CrossRefGoogle Scholar
  6. 6.
    J. Singh, Fabrication Characteristics and Tribological Behavior of Al/SiC/Gr Hybrid Aluminum Matrix Composites: A Review, Friction, 2016, 4(3), p 191–207CrossRefGoogle Scholar
  7. 7.
    J. Leng, G. Wu, Q. Zhou, Z. Dou, and X. Huang, Mechanical Properties of SiC/Gr/Al Composites Fabricated by Squeeze Casting Technology, Scr. Mater., 2008, 59(6), p 619–622CrossRefGoogle Scholar
  8. 8.
    S. Mahdavi and F. Akhlaghi, Effect of SiC Content on the Processing, Compaction Behavior, and Properties of Al6061/SiC/Gr Hybrid Composites, J. Mater. Sci., 2011, 46(5), p 1502–1511CrossRefGoogle Scholar
  9. 9.
    P. Ravindran, K. Manisekar, S. Vinoth Kumar, and P. Rathika, Investigation of Microstructure and Mechanical Properties of Aluminum Hybrid Nano-composites with the Additions of Solid Lubricant, Mater. Des., 2013, 51, p 448–456CrossRefGoogle Scholar
  10. 10.
    N.C. Kaushik and R.N. Rao, Effect of Grit Size on Two Body Abrasive Wear of Al 6082 Hybrid Composites Produced by Stir Casting Method, Tribol. Int., 2016, 102, p 52–60CrossRefGoogle Scholar
  11. 11.
    S. Suresha and B.K. Sridhara, Wear Characteristics of Hybrid Aluminium Matrix Composites Reinforced with Graphite and Silicon Carbide Particulates, Compos. Sci. Technol., 2010, 70(11), p 1652–1659CrossRefGoogle Scholar
  12. 12.
    M. Kok, Production and Mechanical Properties of Al2O3 Particle-Reinforced 2024 Aluminium Alloy Composites, J. Mater. Process. Technol., 2005, 161(3), p 381–387CrossRefGoogle Scholar
  13. 13.
    J. Hashim, L. Looney, and M.S.J. Hashmi, The Enhancement of Wettability of SiC Particles in Cast Aluminium Matrix Composites, J. Mater. Process. Technol., 2001, 119(1-3), p 329–335CrossRefGoogle Scholar
  14. 14.
    A. Bachmaier and R. Pippan*, Generation of Metallic Nanocomposites by Severe Plastic Deformation, Int. Mater. Rev., 2013, 58(1), p 41–62CrossRefGoogle Scholar
  15. 15.
    R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu, Fundamentals of Superior Properties in Bulk nanoSPD Materials, Mater. Res. Lett., 2016, 4(1), p 1–21CrossRefGoogle Scholar
  16. 16.
    Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel Ultra-High Straining Process for Bulk Materials—Development of the Accumulative Roll-Bonding (ARB) Process, Acta Mater., 1999, 47(2), p 579–583CrossRefGoogle Scholar
  17. 17.
    A. Shabani and M.R. Toroghinejad, Investigation of the Microstructure and the Mechanical Properties of Cu-NiC Composite Produced by Accumulative Roll Bonding and Coating Processes, J. Mater. Eng. Perform., 2015, 24(12), p 4746–4754CrossRefGoogle Scholar
  18. 18.
    M. Shamanian, M. Mohammadnezhad, and J. Szpunar, Production of High-Strength Al/Al2O3/WC Composite by Accumulative Roll Bonding, J. Mater. Eng. Perform., 2014, 23(9), p 3152–3158CrossRefGoogle Scholar
  19. 19.
    M. Reihanian, E. Bagherpour, and M.H. Paydar, On the Achievement of Uniform Particle Distribution in Metal Matrix Composites Fabricated by Accumulative Roll Bonding, Mater. Lett., 2013, 91, p 59–62CrossRefGoogle Scholar
  20. 20.
    M. Reihanian, E. Bagherpour, and M.H. Paydar, Particle Distribution in Metal Matrix Composites Fabricated by Accumulative Roll Bonding, Mater. Sci. Technol., 2012, 28(1), p 103–108CrossRefGoogle Scholar
  21. 21.
    L. Ghalandari, M.M. Mahdavian, and M. Reihanian, Microstructure Evolution and Mechanical Properties of Cu/Zn Multilayer Processed by Accumulative Roll Bonding (ARB), Mater. Sci. Eng. A, 2014, 593, p 145–152CrossRefGoogle Scholar
  22. 22.
    A. Fattah-alhosseini, M. Naseri, and M.H. Alemi, Corrosion Behavior Assessment of Finely Dispersed and Highly Uniform Al/B4C/SiC Hybrid Composite Fabricated via Accumulative Roll Bonding Process, J. Manuf. Processes, 2016, 22, p 120–126CrossRefGoogle Scholar
  23. 23.
    H. Farajzadeh Dehkordi, M.R. Toroghinejad, and K. Raeissi, Fabrication of Al/Al2O3/TiC Hybrid Composite by Anodizing and Accumulative Roll Bonding Processes and Investigation of Its Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2013, 585, p 460–467CrossRefGoogle Scholar
  24. 24.
    M.I. Abd El Aal, N. El Mahallawy, F.A. Shehata, M. Abd El Hameed, E.Y. Yoon, and H.S. Kim, Wear Properties of ECAP-Processed Ultrafine Grained Al-Cu Alloys, Mater. Sci. Eng. A, 2010, 527(16-17), p 3726–3732CrossRefGoogle Scholar
  25. 25.
    N. Gao, C. Wang, R.K. Wood, and T. Langdon, Tribological Properties of Ultrafine-Grained Materials Processed by Severe Plastic Deformation, J. Mater. Sci., 2012, 47(12), p 4779–4797 ((in English))CrossRefGoogle Scholar
  26. 26.
    A.K. Talachi, M. Eizadjou, H.D. Manesh, and K. Janghorban, Wear Characteristics of Severely Deformed Aluminum Sheets by Accumulative Roll Bonding (ARB) Process, Mater. Charact., 2011, 62(1), p 12–21CrossRefGoogle Scholar
  27. 27.
    E. Darmiani, I. Danaee, M.A. Golozar, M.R. Toroghinejad, A. Ashrafi, and A. Ahmadi, Reciprocating Wear Resistance of Al-SiC Nano-Composite Fabricated by Accumulative Roll Bonding Process, Mater. Des., 2013, 50, p 497–502CrossRefGoogle Scholar
  28. 28.
    R. Jamaati, M. Naseri, and M.R. Toroghinejad, Wear Behavior Of Nanostructured Al/Al2O3 Composite Fabricated via Accumulative Roll Bonding (ARB) Process, Mater. Des., 2014, 59, p 540–549CrossRefGoogle Scholar
  29. 29.
    E. Bagherpour, M. Reihanian, and H. Miyamoto, Tailoring Particle Distribution Non-Uniformity and Grain Refinement in Nanostructured Metal Matrix Composites Fabricated by Severe Plastic Deformation (SPD): A Correlation with Flow Stress, J. Mater. Sci., 2017, 52(6), p 3436–3446CrossRefGoogle Scholar
  30. 30.
    N. Kamikawa, T. Sakai, and N. Tsuji, Effect of Redundant Shear Strain On Microstructure and Texture Evolution During Accumulative Roll-Bonding in Ultralow Carbon IF Steel, Acta Mater., 2007, 55(17), p 5873–5888CrossRefGoogle Scholar
  31. 31.
    Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong, Ultra-Fine Grained Bulk Aluminum Produced by Accumulative Roll-Bonding (ARB) Process, Scr. Mater., 1998, 39(9), p 1221–1227CrossRefGoogle Scholar
  32. 32.
    A. Yazdani, E. Salahinejad, J. Moradgholi, and M. Hosseini, A New Consideration on Reinforcement Distribution in the Different Planes of Nanostructured Metal Matrix Composite Sheets Prepared by Accumulative Roll Bonding (ARB), J. Alloys Compd., 2011, 509(39), p 9562–9564CrossRefGoogle Scholar
  33. 33.
    M. Rezayat, A. Akbarzadeh, and A. Owhadi, Fabrication of High-Strength Al/SiC p Nanocomposite Sheets by Accumulative Roll Bonding, Metall. Mater. Trans. A, 2012, 43(6), p 2085–2093 ((in English))CrossRefGoogle Scholar
  34. 34.
    M. Alizadeh and M. Talebian, Fabrication of Al/Cup Composite by Accumulative Roll Bonding Process and Investigation of Mechanical Properties, Mater. Sci. Eng. A, 2012, 558, p 331–337CrossRefGoogle Scholar
  35. 35.
    L. Li, K. Nagai, and F. Yin, Progress in Cold Roll Bonding of Metals, Sci. Technol. Adv. Mater., 2008, 9(2), p 023001CrossRefGoogle Scholar
  36. 36.
    M. Alizadeh and M.H. Paydar, High-Strength Nanostructured Al/B4C Composite Processed by Cross-Roll Accumulative Roll Bonding, Mater. Sci. Eng. A, 2012, 538, p 14–19CrossRefGoogle Scholar
  37. 37.
    R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater Sci., 2006, 51(7), p 881–981CrossRefGoogle Scholar
  38. 38.
    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater Sci., 2000, 45(2), p 103–189CrossRefGoogle Scholar
  39. 39.
    M. Reihanian, R. Ebrahimi, N. Tsuji, and M.M. Moshksar, Analysis of the Mechanical Properties and Deformation Behavior Of Nanostructured Commercially Pure Al Processed by Equal Channel Angular Pressing (ECAP), Mater. Sci. Eng. A, 2008, 473(1-2), p 189–194CrossRefGoogle Scholar
  40. 40.
    M. Reihanian, R. Ebrahimi, M.M. Moshksar, D. Terada, and N. Tsuji, Microstructure Quantification and Correlation with Flow Stress Of Ultrafine Grained Commercially Pure Al Fabricated By Equal Channel Angular Pressing (ECAP), Mater. Charact., 2008, 59(9), p 1312–1323CrossRefGoogle Scholar
  41. 41.
    A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, Severe Plastic Deformation (SPD) Processes for Metals, CIRP Ann. Manuf. Technol., 2008, 57(2), p 716–735CrossRefGoogle Scholar
  42. 42.
    T.H. Courtney, Mechanical Behavior of Materials, 2nd ed., McGraw Hill Custom Publishing, New York, 2000Google Scholar
  43. 43.
    H. Sekine and R. Chent, A Combined Microstructure Strengthening Analysis of SiCp/Al Metal Matrix Composites, Composites, 1995, 26(3), p 183–188CrossRefGoogle Scholar
  44. 44.
    M. Alizadeh, Strengthening Mechanisms in Particulate Al/B4C Composites Produced by Repeated Roll Bonding Process, J. Alloys Compd., 2011, 509(5), p 2243–2247CrossRefGoogle Scholar
  45. 45.
    R. Jamaati, M.R. Toroghinejad, J.A. Szpunar, and D.J. Li, Tribocorrosion Behavior of Aluminum/Alumina Composite Manufactured by Anodizing and ARB Processes, J. Mater. Eng. Perform., 2011, 20(9), p 1600–1605CrossRefGoogle Scholar
  46. 46.
    K.H.W. Seah, S.C. Sharma, and B.M. Girish, Mechanical Properties of Cast ZA-27/Graphite Particulate Composites, Mater. Des., 1995, 16(5), p 271–275CrossRefGoogle Scholar
  47. 47.
    M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical Properties of Nanocrystalline Materials, Prog. Mater Sci., 2006, 51(4), p 427–556CrossRefGoogle Scholar
  48. 48.
    D.J. Wulpi, Understanding how Components Fail, 1st ed., ASM International, Almere, 1999Google Scholar
  49. 49.
    K.H.Z. Gahr, Microstructure and Wear of Materials, 1st ed., Elsevier Science, Amsterdam, 1987Google Scholar
  50. 50.
    S. Wilson and A.T. Alpas, Wear Mechanism Maps for Metal Matrix Composites, Wear, 1997, 212(1), p 41–49CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Faculty of EngineeringShahid Chamran University of AhvazAhvazIran

Personalised recommendations