Skip to main content
Log in

Influence of Al2O3 Particle Size on Microstructure, Mechanical Properties and Abrasive Wear Behavior of Flame-Sprayed and Remelted NiCrBSi Coatings

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The influence of micrometric alumina (low surface area-to-volume ratio) and nanometric alumina (high surface area-to-volume ratio) on microstructure, hardness and abrasive wear of a NiCrBSi hardfacing alloy coating applied to an AISI 304 substrate using flame spraying (FS) combined with surface flame melting (SFM) is studied. Remelting after spraying improved the mechanical and tribological properties of the coatings. Microstructural characterization using XRD, SEM and EDS indicated that alumina additions produced similar phases (NiSi, Ni3B, CrC and Ni31Si12) regardless of the alumina size, but the phases differed in morphology, size distribution and relative proportions from one coating to another. The addition of 12 wt.% nanometric Al2O3 increased the phases concentration more than five- to sixfold and reduced the hard phases size about four-to threefold compared with NiCrBSi + 12 wt.% micrometric Al2O3. Nanoalumina led to reduced mass loss during abrasive wear compared to micrometric alumina and greater improvement in hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Qian, L.C. Lim, and Z.D. Chen, Laser Cladding of Nickel-Based Hardfacing Alloys, Surf. Coat. Technol., 1998, 106, p 174–182

    Article  Google Scholar 

  2. A. Conde, F. Zubiri, and J. Damborenea, Cladding of Ni-Cr-B-Si Coatings with a High Power Diode Laser, Mater. Sci. Eng., A, 2002, 334(1–2), p 233–238

    Article  Google Scholar 

  3. J. Rodríguez, A. Martín, R. Fernández, and J.E. Fernández, An Experimental Study of the Wear Performance of NiCrBSi Thermal Spray Coatings, Wear, 2003, 255, p 950–955

    Article  Google Scholar 

  4. P. Wu, X.L. Chen, and E.Y. Jiang, Influence of WC Particle Behavior on the Wear Resistance Properties of Ni-WC Composite Coatings, Wear, 2004, 257(1–2), p 142–147

    Article  Google Scholar 

  5. A. Martín, J. Rodríguez, J.E. Fernández, and R. Vijande, Sliding Wear Behaviour of Plasma Sprayed WC-NiCrBSi Coatings at Different Temperatures, Wear, 2001, 251(1–12), p 1017–1022

    Article  Google Scholar 

  6. L. Shan-Ping and K. Oh-Yang, Microstructure and Bonding Strength of WC Reinforced Ni-base Alloy Brazed Composite Coating, Surf. Coat. Technol., 2002, 153(1), p 40–48

    Article  Google Scholar 

  7. J.M. Miguel, J.M. Guilemany, and S. Vizcaino, Tribological Study of NiCrBSi Coating Obtained by Different Processes, Tribol. Int., 2003, 36, p 181–187

    Article  Google Scholar 

  8. H.-J. Kim, S.-Y. Hwang, C.-H. Lee, and P. Juvanon, Assessment of Wear Performance of Flame Sprayed and Fused Ni-Based coatings, Surf. Coat. Technol., 2003, 172(1–2), p 262–269

    Article  Google Scholar 

  9. Y. Qiao, T.E. Fischer, and A. Dent, The Effects of Fuel Chemistry and Feedstock Powder Structure on the Mechanical and Tribological Properties of HVOF Thermal-Sprayed WC-Co Coatings with Very Fine Structures, Surf. Coat. Technol., 2003, 172(1), p 24–41

    Article  Google Scholar 

  10. C. Navas, R. Colao, J. De Damborenea, and R. Vilar, Abrasive Wear Behavior of Laser Clad and Flame Sprayed-Melted NiCrBSi Coatings, Surf. Coat. Technol., 2006, 200, p 6854–6862

    Article  Google Scholar 

  11. H. Kim, S. Hwang, C. Lee, and P. Juvanon, Assessment of Wear Performance of Flame Sprayed and Fused Ni-based Coatings, Surf. Coat. Technol., 2003, 172, p 262–269

    Article  Google Scholar 

  12. R. Gonzalez, M. Cadenas, R. Fernández, J.L. Cortizo, and E. Rodríguez, Wear Behaviour of Flame Sprayed NiCrBSi Coating Remelted by Flame or by Laser, Wear, 2007, 262, p 301–307

    Article  Google Scholar 

  13. J. Rodríguez, A. Martín, R. Fernández, and J.E. Fernández, An Experimental Study of the Wear Performance of NiCrBSi Thermal Spray Coatings, Wear, 2003, 255, p 950–955

    Article  Google Scholar 

  14. J. Kim, S.-Y. Hwang, C.-H. Lee, and P. Juvanson, Assessment of Wear Performance of Flame Sprayed and Fused Ni-Based Coatings, Surf. Coat. Technol., 2003, 172, p 262–269

    Article  Google Scholar 

  15. C. Katsich and E. Badisch, Effect of Carbide Degradation in a Ni-Based Hardfacing Under Abrasive and Combined Impact/Abrasive Conditions, Surf. Coat. Technol., 2011, 206, p 1062–1068

    Article  Google Scholar 

  16. P. Niranatlumpong and H. Korprasert, Phase Transformation of NiCrBSi-WC and NiBSi-WC Arc Sprayed Coatings, Surf. Coat. Technol., 2011, 206, p 440–445

    Article  Google Scholar 

  17. M.R. Ramesh, S. Prakash, S.K. Nath, P.K. Sapra, and B. Venkataraman, Solid Particle Erosion of HVOF-Sprayed WC-Co/NiCrFeSiB Coatings, Wear, 2010, 269, p 197–205

    Article  Google Scholar 

  18. P. Kulu and J. Halling, Recycled Hard Metal-Base Wear-Resistant Composite Coatings, J. Thermal Spray Technol., 1998, 7, p 173–178

    Article  Google Scholar 

  19. P. Kulu and T. Pihl, Selection Criteria for Wear Resistant Powder Coatings Under Extreme Erosive Wear Conditions, J. Thermal Spray Technol., 2002, 11, p 517–522

    Article  Google Scholar 

  20. P. Kulu and S. Zimakov, Wear Resistance of Thermal Sprayed Coatings on the Base of Recycled Hardmetal, Surf. Coat. Technol., 2000, 130, p 46–51

    Article  Google Scholar 

  21. A. Zikin, M. Antonov, I. Hussainova, L. Katona, and A. Gavrilović, High Temperature Wear of Cermet Particles Reinforced NiCrBSi Hardfacings, Trib. Int., 2013, 68, p 45–55

    Article  Google Scholar 

  22. H. Sarjas, D. Goljandin, P. Kulu, V. Mikli, A. Surženkov, and P. Vuoristo, Wear Resistant Thermal Sprayed Composite Coatings Based on Iron Self-fluxing Alloy and Recycled Cermet Powders, Mater. Sci. (Medžiagotyra), 2012, 18, p 34–39

    Google Scholar 

  23. K.W.D. Hart, D.H. Harper, M.J. Gill Case studies in wear resistance using HVOF, PTAW and Spray Fusion Surfacing. 1st International Thermal Spray Conference, Materials Park, OH. ASM International, Montreal, Canada (2000), p 1117–1125

  24. A. Klimpel, A. Lisiecki, A. St. Klimpel, and A. Rzeznikiewicz, Robotized GMA Surfacing of Cermetal Deposits, J. Achiev. Mater. Manuf. Eng., 2006, 18(1–2), p 395–398

    Google Scholar 

  25. S. Babu, S. David, R. Martukanitz, and K. Parks, Toward Prediction of Microstructural Evolution During Laser Surface Alloying, Metall. Mater. Trans. A, 2002, 33, p 1189–1200

    Article  Google Scholar 

  26. S. Matthews, M. Hyland, and B. James, Microhardness Variation in Relation to Carbide Development in Heat Treated Cr3C2-NiCr Thermal Spray Coatings, Acta Mater., 2003, 51, p 4267–4277

    Article  Google Scholar 

  27. J. KJluuttiia, S. Ahmanierni, E. Leivo, P. Sorsa, P. Vuoristo, and T. Mantylat, Wet Abrasion and Slurry Erosion Resistance of Sealed Oxide Coatings, Proceedings of the 15th International Thermal Spray Conference, 25-29 May 1998 (1), Nice, France, p 145–150.

  28. A. Giroud, C. Jouanny, J.L. Heuze, F. Gaillard, and P. Guiraldenq, Friction and corrosion behavior of different ceramic coatings (oxides) obtained by thermal spray for qualification tests in sea water, Proceedings of the 15th International Thermal Spray Conference, 25-29 May 1998 (1), Nice, France, p 211–216.

  29. C. Ding, 1. Li, L Zhang, X. Yu, Wear evaluation of plasma; sprayed oxide and carbide coatings, Proceedings of the 15th International Thermal Spray Conference, 25-29 May 1998 (1), Nice. France, p 275–279

  30. C. Li, Y. Want, A. Ohmori, and C.C. Berndt, Ed., Thermal Spray: Surface Engineering Via Applied Research, ASM International, OH, 2000, p 791

    Google Scholar 

  31. T. Ram Prabhu, Investigations of the Effect of Particle Properties on the Wear Resistance of the Particle Reinforce Composites Using a Novel Wear Model, Int. J. Comput. Mater. Sci. Eng., 2016, 5(02). doi:10.1142/S2047684116500135

  32. S. Natarajan, E. Anand, K.S. Akhilesh, and A. Rajagopal, Effect of Addition on the Microstructure, Hardness and Abrasive Wear Behavior of Plasma Sprayed NiCrBSi Coatings, Mater. Chem. Phys., 2016, 175, p 100–106

    Article  Google Scholar 

  33. S. Harsha, D.K. Dwivedi, and A. Agrawal, Influence of WC Addition in Co-Cr-W-Ni-C Flame Sprayed Coatings on Microstructure Microhardness and Wear Behaviour, Surf. Coat. Technol., 2007, 201, p 5766–5775

    Article  Google Scholar 

  34. S.J. Gregg, and K.S.W. Sing, Adsorption, Surface Area and Porosity. 2. Auflage, Academic Press, London 1982, 303 Seiten

  35. S. Lowell, and J.E. Shields, Powder Surface Area and Porosity, Technology & Engineering, 1991, p 252

  36. F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powder and Porous Solids: Principles, Methodology and Applications, Elsevier, 1999, ISBN: 978012598920

  37. S. Brunauer, P.H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc., 1938, 60, p 309–319

  38. T. Gómez-del Río, M.A. Garrido, J.E. Fernández, M. Cadenas, and J. Rodríguez, Influence of the Deposition Techniques on the Mechanical Properties and Microstructure of NiCrBSi Coatings, J. Mater. Process. Technol., 2008, 204(1–3), p 304–312

  39. D. Guo, F. Li, J. Wang, and J. Sun, Effects of Post-coating Processing on Structure and Erosive Wear Characteristics of Flame and Plasma Spray Coatings, Surf. Coat. Technol., 1995, 73(1–2), p 73–76, 78

  40. R. Zieris, S. Nowotny, L. Berger, L. Haubold, and E. Beyer, International Thermal Spray Conference: Advancing the Science and Applying the Technology, ASM International, OH, 2003, p 567–577

    Google Scholar 

  41. R. Vilar, Laser Cladding, Laser Appl., 1999, 11, p 64

    Article  Google Scholar 

  42. K.I. Dragnevski, A.M. Mullis, and R.F. Cochrane, The Effect of Experimental Variables on the Levels of Melt Undercooling, Mater. Sci. Eng., 2004, A375–377, p 485–487

    Article  Google Scholar 

  43. A. French and W. Kurz, Microstructural Effects on the Sliding Wear Resistance of a Cobalt-Based Alloy, Wear, 1994, 174(1–2), p 81–91

    Article  Google Scholar 

  44. J.K. Kim and R.K. Rohatgi, An Analytical Solution of the Critical Interface Velocity for the Encapturing of Insoluble Particles by a Moving Solid/Liquid Interface, Met. Trans. A, 1998, 29, p 351–358

    Article  Google Scholar 

  45. D.W. Zhang, T. Lei, and Ch Chen, The Effects of Heat Treatment on Microstructure and Erosion Properties of Laser Surface-Clad Ni-Base Alloy, Surf. Coat. Technol., 1999, 115, p 176–183

    Article  Google Scholar 

  46. Z. Dawei, T. Li, and T.C. Lei, Laser Cladding of Ni-Cr3C2/(Ni + Cr) Composite Coating, Surf. Coat. Technol., 1998, 110, p 81–85

    Article  Google Scholar 

  47. R.I. Terzona, D.N. Allopp, and I.M. Hutchings, Transitions Between Two-Body and Three-Body Abrasive Wear: Influence of Test Conditions in the Microscale Abrasive Wear Test, Wear, 1999, 225–229, p 205–214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Habib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habib, K.A., Cano, D.L., Caudet, C.T. et al. Influence of Al2O3 Particle Size on Microstructure, Mechanical Properties and Abrasive Wear Behavior of Flame-Sprayed and Remelted NiCrBSi Coatings. J. of Materi Eng and Perform 26, 1647–1656 (2017). https://doi.org/10.1007/s11665-017-2603-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2603-0

Keywords

Navigation