Journal of Materials Engineering and Performance

, Volume 26, Issue 4, pp 1647–1656 | Cite as

Influence of Al2O3 Particle Size on Microstructure, Mechanical Properties and Abrasive Wear Behavior of Flame-Sprayed and Remelted NiCrBSi Coatings

  • K. A. Habib
  • D. L. Cano
  • C. T. Caudet
  • M. S. Damra
  • I. Cervera
  • J. Bellés
  • P. Ortells


The influence of micrometric alumina (low surface area-to-volume ratio) and nanometric alumina (high surface area-to-volume ratio) on microstructure, hardness and abrasive wear of a NiCrBSi hardfacing alloy coating applied to an AISI 304 substrate using flame spraying (FS) combined with surface flame melting (SFM) is studied. Remelting after spraying improved the mechanical and tribological properties of the coatings. Microstructural characterization using XRD, SEM and EDS indicated that alumina additions produced similar phases (NiSi, Ni3B, CrC and Ni31Si12) regardless of the alumina size, but the phases differed in morphology, size distribution and relative proportions from one coating to another. The addition of 12 wt.% nanometric Al2O3 increased the phases concentration more than five- to sixfold and reduced the hard phases size about four-to threefold compared with NiCrBSi + 12 wt.% micrometric Al2O3. Nanoalumina led to reduced mass loss during abrasive wear compared to micrometric alumina and greater improvement in hardness.


abrasive wear flame spray micrometric and nanometric Al2O3 NiCrBSi particles surface area surface flame melting 


  1. 1.
    M. Qian, L.C. Lim, and Z.D. Chen, Laser Cladding of Nickel-Based Hardfacing Alloys, Surf. Coat. Technol., 1998, 106, p 174–182CrossRefGoogle Scholar
  2. 2.
    A. Conde, F. Zubiri, and J. Damborenea, Cladding of Ni-Cr-B-Si Coatings with a High Power Diode Laser, Mater. Sci. Eng., A, 2002, 334(1–2), p 233–238CrossRefGoogle Scholar
  3. 3.
    J. Rodríguez, A. Martín, R. Fernández, and J.E. Fernández, An Experimental Study of the Wear Performance of NiCrBSi Thermal Spray Coatings, Wear, 2003, 255, p 950–955CrossRefGoogle Scholar
  4. 4.
    P. Wu, X.L. Chen, and E.Y. Jiang, Influence of WC Particle Behavior on the Wear Resistance Properties of Ni-WC Composite Coatings, Wear, 2004, 257(1–2), p 142–147CrossRefGoogle Scholar
  5. 5.
    A. Martín, J. Rodríguez, J.E. Fernández, and R. Vijande, Sliding Wear Behaviour of Plasma Sprayed WC-NiCrBSi Coatings at Different Temperatures, Wear, 2001, 251(1–12), p 1017–1022CrossRefGoogle Scholar
  6. 6.
    L. Shan-Ping and K. Oh-Yang, Microstructure and Bonding Strength of WC Reinforced Ni-base Alloy Brazed Composite Coating, Surf. Coat. Technol., 2002, 153(1), p 40–48CrossRefGoogle Scholar
  7. 7.
    J.M. Miguel, J.M. Guilemany, and S. Vizcaino, Tribological Study of NiCrBSi Coating Obtained by Different Processes, Tribol. Int., 2003, 36, p 181–187CrossRefGoogle Scholar
  8. 8.
    H.-J. Kim, S.-Y. Hwang, C.-H. Lee, and P. Juvanon, Assessment of Wear Performance of Flame Sprayed and Fused Ni-Based coatings, Surf. Coat. Technol., 2003, 172(1–2), p 262–269CrossRefGoogle Scholar
  9. 9.
    Y. Qiao, T.E. Fischer, and A. Dent, The Effects of Fuel Chemistry and Feedstock Powder Structure on the Mechanical and Tribological Properties of HVOF Thermal-Sprayed WC-Co Coatings with Very Fine Structures, Surf. Coat. Technol., 2003, 172(1), p 24–41CrossRefGoogle Scholar
  10. 10.
    C. Navas, R. Colao, J. De Damborenea, and R. Vilar, Abrasive Wear Behavior of Laser Clad and Flame Sprayed-Melted NiCrBSi Coatings, Surf. Coat. Technol., 2006, 200, p 6854–6862CrossRefGoogle Scholar
  11. 11.
    H. Kim, S. Hwang, C. Lee, and P. Juvanon, Assessment of Wear Performance of Flame Sprayed and Fused Ni-based Coatings, Surf. Coat. Technol., 2003, 172, p 262–269CrossRefGoogle Scholar
  12. 12.
    R. Gonzalez, M. Cadenas, R. Fernández, J.L. Cortizo, and E. Rodríguez, Wear Behaviour of Flame Sprayed NiCrBSi Coating Remelted by Flame or by Laser, Wear, 2007, 262, p 301–307CrossRefGoogle Scholar
  13. 13.
    J. Rodríguez, A. Martín, R. Fernández, and J.E. Fernández, An Experimental Study of the Wear Performance of NiCrBSi Thermal Spray Coatings, Wear, 2003, 255, p 950–955CrossRefGoogle Scholar
  14. 14.
    J. Kim, S.-Y. Hwang, C.-H. Lee, and P. Juvanson, Assessment of Wear Performance of Flame Sprayed and Fused Ni-Based Coatings, Surf. Coat. Technol., 2003, 172, p 262–269CrossRefGoogle Scholar
  15. 15.
    C. Katsich and E. Badisch, Effect of Carbide Degradation in a Ni-Based Hardfacing Under Abrasive and Combined Impact/Abrasive Conditions, Surf. Coat. Technol., 2011, 206, p 1062–1068CrossRefGoogle Scholar
  16. 16.
    P. Niranatlumpong and H. Korprasert, Phase Transformation of NiCrBSi-WC and NiBSi-WC Arc Sprayed Coatings, Surf. Coat. Technol., 2011, 206, p 440–445CrossRefGoogle Scholar
  17. 17.
    M.R. Ramesh, S. Prakash, S.K. Nath, P.K. Sapra, and B. Venkataraman, Solid Particle Erosion of HVOF-Sprayed WC-Co/NiCrFeSiB Coatings, Wear, 2010, 269, p 197–205CrossRefGoogle Scholar
  18. 18.
    P. Kulu and J. Halling, Recycled Hard Metal-Base Wear-Resistant Composite Coatings, J. Thermal Spray Technol., 1998, 7, p 173–178CrossRefGoogle Scholar
  19. 19.
    P. Kulu and T. Pihl, Selection Criteria for Wear Resistant Powder Coatings Under Extreme Erosive Wear Conditions, J. Thermal Spray Technol., 2002, 11, p 517–522CrossRefGoogle Scholar
  20. 20.
    P. Kulu and S. Zimakov, Wear Resistance of Thermal Sprayed Coatings on the Base of Recycled Hardmetal, Surf. Coat. Technol., 2000, 130, p 46–51CrossRefGoogle Scholar
  21. 21.
    A. Zikin, M. Antonov, I. Hussainova, L. Katona, and A. Gavrilović, High Temperature Wear of Cermet Particles Reinforced NiCrBSi Hardfacings, Trib. Int., 2013, 68, p 45–55CrossRefGoogle Scholar
  22. 22.
    H. Sarjas, D. Goljandin, P. Kulu, V. Mikli, A. Surženkov, and P. Vuoristo, Wear Resistant Thermal Sprayed Composite Coatings Based on Iron Self-fluxing Alloy and Recycled Cermet Powders, Mater. Sci. (Medžiagotyra), 2012, 18, p 34–39Google Scholar
  23. 23.
    K.W.D. Hart, D.H. Harper, M.J. Gill Case studies in wear resistance using HVOF, PTAW and Spray Fusion Surfacing. 1st International Thermal Spray Conference, Materials Park, OH. ASM International, Montreal, Canada (2000), p 1117–1125Google Scholar
  24. 24.
    A. Klimpel, A. Lisiecki, A. St. Klimpel, and A. Rzeznikiewicz, Robotized GMA Surfacing of Cermetal Deposits, J. Achiev. Mater. Manuf. Eng., 2006, 18(1–2), p 395–398Google Scholar
  25. 25.
    S. Babu, S. David, R. Martukanitz, and K. Parks, Toward Prediction of Microstructural Evolution During Laser Surface Alloying, Metall. Mater. Trans. A, 2002, 33, p 1189–1200CrossRefGoogle Scholar
  26. 26.
    S. Matthews, M. Hyland, and B. James, Microhardness Variation in Relation to Carbide Development in Heat Treated Cr3C2-NiCr Thermal Spray Coatings, Acta Mater., 2003, 51, p 4267–4277CrossRefGoogle Scholar
  27. 27.
    J. KJluuttiia, S. Ahmanierni, E. Leivo, P. Sorsa, P. Vuoristo, and T. Mantylat, Wet Abrasion and Slurry Erosion Resistance of Sealed Oxide Coatings, Proceedings of the 15th International Thermal Spray Conference, 25-29 May 1998 (1), Nice, France, p 145–150.Google Scholar
  28. 28.
    A. Giroud, C. Jouanny, J.L. Heuze, F. Gaillard, and P. Guiraldenq, Friction and corrosion behavior of different ceramic coatings (oxides) obtained by thermal spray for qualification tests in sea water, Proceedings of the 15th International Thermal Spray Conference, 25-29 May 1998 (1), Nice, France, p 211–216.Google Scholar
  29. 29.
    C. Ding, 1. Li, L Zhang, X. Yu, Wear evaluation of plasma; sprayed oxide and carbide coatings, Proceedings of the 15th International Thermal Spray Conference, 25-29 May 1998 (1), Nice. France, p 275–279Google Scholar
  30. 30.
    C. Li, Y. Want, A. Ohmori, and C.C. Berndt, Ed., Thermal Spray: Surface Engineering Via Applied Research, ASM International, OH, 2000, p 791Google Scholar
  31. 31.
    T. Ram Prabhu, Investigations of the Effect of Particle Properties on the Wear Resistance of the Particle Reinforce Composites Using a Novel Wear Model, Int. J. Comput. Mater. Sci. Eng., 2016, 5(02). doi: 10.1142/S2047684116500135
  32. 32.
    S. Natarajan, E. Anand, K.S. Akhilesh, and A. Rajagopal, Effect of Addition on the Microstructure, Hardness and Abrasive Wear Behavior of Plasma Sprayed NiCrBSi Coatings, Mater. Chem. Phys., 2016, 175, p 100–106CrossRefGoogle Scholar
  33. 33.
    S. Harsha, D.K. Dwivedi, and A. Agrawal, Influence of WC Addition in Co-Cr-W-Ni-C Flame Sprayed Coatings on Microstructure Microhardness and Wear Behaviour, Surf. Coat. Technol., 2007, 201, p 5766–5775CrossRefGoogle Scholar
  34. 34.
    S.J. Gregg, and K.S.W. Sing, Adsorption, Surface Area and Porosity. 2. Auflage, Academic Press, London 1982, 303 SeitenGoogle Scholar
  35. 35.
    S. Lowell, and J.E. Shields, Powder Surface Area and Porosity, Technology & Engineering, 1991, p 252Google Scholar
  36. 36.
    F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powder and Porous Solids: Principles, Methodology and Applications, Elsevier, 1999, ISBN: 978012598920Google Scholar
  37. 37.
    S. Brunauer, P.H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc., 1938, 60, p 309–319Google Scholar
  38. 38.
    T. Gómez-del Río, M.A. Garrido, J.E. Fernández, M. Cadenas, and J. Rodríguez, Influence of the Deposition Techniques on the Mechanical Properties and Microstructure of NiCrBSi Coatings, J. Mater. Process. Technol., 2008, 204(1–3), p 304–312Google Scholar
  39. 39.
    D. Guo, F. Li, J. Wang, and J. Sun, Effects of Post-coating Processing on Structure and Erosive Wear Characteristics of Flame and Plasma Spray Coatings, Surf. Coat. Technol., 1995, 73(1–2), p 73–76, 78Google Scholar
  40. 40.
    R. Zieris, S. Nowotny, L. Berger, L. Haubold, and E. Beyer, International Thermal Spray Conference: Advancing the Science and Applying the Technology, ASM International, OH, 2003, p 567–577Google Scholar
  41. 41.
    R. Vilar, Laser Cladding, Laser Appl., 1999, 11, p 64CrossRefGoogle Scholar
  42. 42.
    K.I. Dragnevski, A.M. Mullis, and R.F. Cochrane, The Effect of Experimental Variables on the Levels of Melt Undercooling, Mater. Sci. Eng., 2004, A375–377, p 485–487CrossRefGoogle Scholar
  43. 43.
    A. French and W. Kurz, Microstructural Effects on the Sliding Wear Resistance of a Cobalt-Based Alloy, Wear, 1994, 174(1–2), p 81–91CrossRefGoogle Scholar
  44. 44.
    J.K. Kim and R.K. Rohatgi, An Analytical Solution of the Critical Interface Velocity for the Encapturing of Insoluble Particles by a Moving Solid/Liquid Interface, Met. Trans. A, 1998, 29, p 351–358CrossRefGoogle Scholar
  45. 45.
    D.W. Zhang, T. Lei, and Ch Chen, The Effects of Heat Treatment on Microstructure and Erosion Properties of Laser Surface-Clad Ni-Base Alloy, Surf. Coat. Technol., 1999, 115, p 176–183CrossRefGoogle Scholar
  46. 46.
    Z. Dawei, T. Li, and T.C. Lei, Laser Cladding of Ni-Cr3C2/(Ni + Cr) Composite Coating, Surf. Coat. Technol., 1998, 110, p 81–85CrossRefGoogle Scholar
  47. 47.
    R.I. Terzona, D.N. Allopp, and I.M. Hutchings, Transitions Between Two-Body and Three-Body Abrasive Wear: Influence of Test Conditions in the Microscale Abrasive Wear Test, Wear, 1999, 225–229, p 205–214CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • K. A. Habib
    • 1
  • D. L. Cano
    • 1
  • C. T. Caudet
    • 1
  • M. S. Damra
    • 1
  • I. Cervera
    • 1
  • J. Bellés
    • 1
  • P. Ortells
    • 1
  1. 1.Department of Industrial System Engineering and DesignUniversitat Jaume ICastellónSpain

Personalised recommendations