Journal of Materials Engineering and Performance

, Volume 26, Issue 4, pp 1900–1907 | Cite as

Comparison of Si Refinement Efficiency of Electromagnetic Stirring and Ultrasonic Treatment for a Hypereutectic Al-Si Alloy

  • Reza Haghayeghi
  • Leandro Cassio de Paula
  • Eugenio Jose Zoqui


The effects of electromagnetic stirring, ultrasonic treatment (UT), and their combination on the Si particles refinement in a hypereutectic Al-Si alloy (A390) were examined. All three physical methods yielded a considerable change in the shape and size of the particles, with UT producing the finest size. The creation of holes inside the Si particles via the explosion of cavitation bubbles was determined to occur before fragmentation of primary Si. In addition, transmission electron microscopy analysis revealed twin formation on primary Si particles by application of an external field in the liquid. UT of the melt was sufficient to produce fine primary Si particles with average size of ~12 µm. The primary Si particles refinement and eutectic Si modification improved the mechanical properties.


aluminum alloy automotive grain refinement microstructure solidification 



The authors express their appreciation to the Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq process number 190088/2014-1 and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—Project: 2013-09961-3 and 2015-22143-3) for their financial support. The authors would also like to extend their appreciation to the School of Mechanical Engineering at the University of Campinas (UNICAMP).


  1. 1.
    N. Kang, P. Coddet, C. Chen, Y. Wang, H. Liao, and C. Coddet, Microstructure and Wear Behaviour of In Situ Hypereutectic Al-High Si Alloys Produced by Selective Laser Melting, Mater. Des., 2016, 99, p 120–125Google Scholar
  2. 2.
    C. Gode, H. Yilmazer, I. Ozdemir, and Y. Todaka, Microstructural Refinement and Wear Property of Al-Si-Cu Composite Subjected to Extrusion and High-Pressure Torsion, Mater. Sci. Eng. A, 2014, 618, p 377–384CrossRefGoogle Scholar
  3. 3.
    F.C.R. Hernandez and J.H. Sokolowski, Comparison Among Chemical and Electromagnetic Stirring and Vibration Melt Treatments for Al-Si Hypereutectic Alloys, J. Alloys Compd., 2006, 426(1-2), p 205–212CrossRefGoogle Scholar
  4. 4.
    H.K. Feng, S.R. Yu, Y.L. Li, and L.Y. Gong, Effect of Ultrasonic Treatment on Microstructures of Hypereutectic Al 23% Si Alloy, Mater. Proc. Technol., 2008, 208(1-3), p 330–335CrossRefGoogle Scholar
  5. 5.
    H.C. Liao, Y. Sun, and G.X. Sun, Correlation Between Mechanical Properties and Amount of Dendritic α-Al Phase in As-Cast Near-Eutectic Al-11.6% Si Alloys Modified with Strontium, Mater. Sci. Eng. A, 2002, 335, p 62–66CrossRefGoogle Scholar
  6. 6.
    M. Tebib, A.M. Samuel, F. Ajersch, and X.G. Chen, Effect of P and Sr Additions on the Microstructure of Hypereutectic Al-15Si-14 Mg-4Cu Alloy, Mater. Charact., 2014, 89, p 112–123CrossRefGoogle Scholar
  7. 7.
    B. Gao, L. Hu, S.W. Li, Y. Hao, Y.D. Zhang, G.F. Tu, and T. Grosdidier, Study on the Nanostructure Formation Mechanism of Hypereutectic Al-17.5Si Alloy Induced by High Current Pulsed Electron Beam, Appl. Surf. Sci., 2015, 346, p 147–157CrossRefGoogle Scholar
  8. 8.
    D. Lu, Y. Jiang, G. Guan, R. Zhou, Z. Li, and R. Zhou, Refinement of Primary Si in Hypereutectic Al-Si Alloy by Electromagnetic Stirring, Mater. Proc. Technol., 2007, 189(1-3), p 13–18CrossRefGoogle Scholar
  9. 9.
    S. Lü, S. Wu, C. Lin, and P. An, Microstructure and Properties of In Situ Si and Fe-rich Particles Reinforced Al Matrix Composites Assisted with Ultrasonic Vibration, Acta Metall. Sin. (Engl. Lett.), 2014, 27(5), p 862–869CrossRefGoogle Scholar
  10. 10.
    R. Haghayeghi, E. Ezzatneshan, and H. Bahai, Experimental–Numerical Study of AA5754 Microstructural Evolution Under Electromagnetic Ultrasonic Merged Fields, J. Mater. Proc. Technol., 2015, 225, p 103–109CrossRefGoogle Scholar
  11. 11.
    L Zhang, D.G. Eskin, A. Miroux, and L. Katgerman, Formation of Microstructure in Al-Si Alloys Under Ultrasonic Melt Treatment, ed. by C.E. Suarez (TMS Light Metals, Orlando, FL, March 11-15 March 2012) p 999Google Scholar
  12. 12.
    V.O. Abramov, O.V. Abramov, B.B. Straumal, and W. Gust, Hypereutectic Al-Si Based Alloys with a Thixotropic Microstructure Produced by Ultrasonic Treatment, Mater. Des., 1997, 18, p 323–326CrossRefGoogle Scholar
  13. 13.
    L. Zhang, Ultrasonic Processing of Aluminum Alloys, PhD thesis, Delft University, 2013Google Scholar
  14. 14.
    J. Flannigan and K.S. Suslick, Plasma Formation and Temperature Measurement During Single-Bubble Cavitation, Nature, 2005, 434(7029), p 52–55CrossRefGoogle Scholar
  15. 15.
    I. Tzanakis, D.G. Eskin, A. Georgoulas, and D. Fytanidis, Incubation Pit Analysis and Calculation of the Hydrodynamic Impact Pressure from the Implosion of an Acoustic Cavitation Bubble, Ultrason. Sonochem., 2014, 21(2), p 866–878CrossRefGoogle Scholar
  16. 16.
    A. Gedanken, Using Sonochemistry for the Fabrication of Nanomaterials, Ultrason. Sonochem., 2004, 11(2), p 47–55CrossRefGoogle Scholar
  17. 17.
    A.I. Telli and S.E. Kısakürek, Effect of Antimony Additions on the Silicon Spacing in Directionally Solidified Al-Si Eutectics, Scr. Metall., 1986, 20, p 1657–1660CrossRefGoogle Scholar
  18. 18.
  19. 19.
    J.W. Zhao and S.-S. Wu, Microstructure and Mechanical Properties of Rheo-Diecasted A390 Alloy, Trans. Nonferrous Met. Soc. China, 2010, 20, p s754–s757CrossRefGoogle Scholar
  20. 20.
    K.W. Al-Helal, I.C. Stone, and Z. Fan, Simultaneous Primary Si Refinement and Eutectic Modification in Hypereutectic Al-Si Alloys, Trans. Indian Inst. Metals, 2012, 65(6), p 663–667CrossRefGoogle Scholar
  21. 21.
    A.W. Bowen and P.G. Partridge, Limitations of the Hollomon Strain-Hardening Equation, J. Phys. D Appl. Phys., 1974, 7, p 969–978CrossRefGoogle Scholar
  22. 22.
    Y. Estrin and H. Necking, A Unified Phenomenological Description of Work Hardening and Creep Based on One Parameter Models, Acta Metall., 1984, 32, p 57–70CrossRefGoogle Scholar
  23. 23.
    J. Zhang, H. Chen, H. Yu, and Y. Jin, Study on Dual Modification of Al-17%Si Alloys by Structural Heredity, Metals, 2015, 5(2), p 1112–1126CrossRefGoogle Scholar
  24. 24.
    M. Shamsuzzoha and L.M. Hogan, The Crystal Morphology of Fibrous Silicon in Strontium-Modified Al-Si Eutectic, Philos. Mag. A, 1986, 54, p 459–477CrossRefGoogle Scholar
  25. 25.
    J.A. Venables, Deformation Twinning in Face-Centred Cubic Metals, Philos. Mag., 1961, 6(63), p 379–396CrossRefGoogle Scholar
  26. 26.
    S. Kibey, J.B. Liu, D.D. Johnson, and H. Sehitoglu, Predicting Twinning Stress in fcc Metals: Linking Twin-Energy Pathways to Twin Nucleation, Acta Mater., 2007, 55, p 6843–6851CrossRefGoogle Scholar
  27. 27.
    S. Mahajan and G.Y. Chin, Formation of Deformation Twins in f.c.c. Crystals, Acta Metall., 1973, 21, p 1353–1363CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Reza Haghayeghi
    • 1
  • Leandro Cassio de Paula
    • 2
  • Eugenio Jose Zoqui
    • 2
  1. 1.Department of Materials Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Materials and Manufacturing Department, School of Mechanical EngineeringUniversity of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations