Journal of Materials Engineering and Performance

, Volume 26, Issue 4, pp 1581–1588 | Cite as

The Microstructure and Gamma Prime Distributions in Inertia Friction Welded Joint of P/M Superalloy FGH96

  • Chi Zhang
  • Wenfei Shen
  • Liwen Zhang
  • Yingnan Xia
  • Ruiqin Li


A gamma prime (γ′) precipitation (~35% in volume)-hardened powder metallurgy (P/M) superalloy FGH96 was welded using inertia friction welding (IFW). The microstructure and γ′ distributions in the joints in two conditions, hot isostatic pressed state and solution-treated and aged state, were characterized. The recrystallization of grains, the dissolution and re-precipitation of γ′ in the joints were discussed in terms of the temperature evolutions which were calculated by finite element model analysis. Regardless of the initial states, fully recrystallized fine grain structure formed at welded zone. Meanwhile, very fine γ′ precipitations were re-precipitated at the welded zone. These recrystallized grain structure and fine re-precipitated γ′ resulted in increasing hardness of IFW joint while making the hardness dependent on the microstructure and γ′ precipitation.


gamma prime (γ′) hardness inertia friction welding microstructure powder metallurgy nickel-based superalloy 



This work was supported by the Fundamental Research Funds for the Central Universities of China and the open fund of the Key Laboratory for Metallurgical Equipment and Control of Ministry of Education in WUHAN University of Science and Technology, China.


  1. 1.
    H.Y. Li, J.F. Sun, M.C. Hardy, H.E. Evans, S.J. Williams, T.J.A. Doel, and P. Bowen, Effects of Microstructure on High Temperature Dwell Fatigue Crack Growth in a Coarse Grain PM Nickel Based Superalloy, Acta Mater., 2015, 90, p 355–369CrossRefGoogle Scholar
  2. 2.
    L. Zheng, M. Zhang, and J. Dong, Oxidation Behavior and Mechanism of Powder Metallurgy Rene95 Nickel Based Superalloy Between 800 and 1000 °C, Appl. Surf. Sci., 2010, 256(24), p 7510–7515CrossRefGoogle Scholar
  3. 3.
    S.G. Tian, Y. Liu, X.M. Zhou, Z.G. Zhao, X.Y. Bao, and W.X. Wang, Creep Behaviors of FGH95 Powder Ni-Base Superalloy, Chin. J. Aeronaut., 2009, 22(4), p 444–448CrossRefGoogle Scholar
  4. 4.
    W.P. Yang, G.Q. Liu, K. Wu, and B.F. Hu, Influence of Sub-solvus Solution Heat Treatment on Morphological Instability in a New Ni-Cr-Co-Based Powder Metallurgy Superalloy, J. Alloys Compd., 2014, 582, p 515–521CrossRefGoogle Scholar
  5. 5.
    J. Xie, S. Tian, L.J. Shang, and X. Zhou, Creep Behaviors and Role of Dislocation Network in a Powder Metallurgy Ni-Based Superalloy During Medium-Temperature, Mater. Sci. Eng. A, 2014, 606, p 304–312CrossRefGoogle Scholar
  6. 6.
    C.J. Wu, Y. Tao, and J. Jia, Microstructure and Properties of an Advanced Nickel-Base PM Superalloy, J. Iron Steel Res., 2014, 21(12), p 1152–1157CrossRefGoogle Scholar
  7. 7.
    M. Zhang, F. Li, Z. Yuan, J. Li, and S. Wang, Effect of Heat Treatment on the Micro-indentation Behavior of Powder Metallurgy Nickel Based Superalloy FGH96, Mater. Des., 2013, 49, p 705–715CrossRefGoogle Scholar
  8. 8.
    Y.L. Gu, C.H. Tao, and Y.H. He, Thermomechanical Fatigue Behavior of Powder Metallurgical Nickel Based Superalloy FGH96, J. Iron Steel Res., 2010, 16(6), p 74–79CrossRefGoogle Scholar
  9. 9.
    M. Preuss, J.W.L. Pang, P.J. Withers, and G.J. Baxter, Inertia Welding Nickel-Based Superalloy. I. Metallurgical Characterization, Metall. Mater. Trans. A, 2002, 33A(10), p 3215–3225CrossRefGoogle Scholar
  10. 10.
    M. Preuss, J.W.L. Pang, P.J. Withers, and G.J. Baxter, Inertia Welding Nickel-Based Superalloy: Part II. Residual Stress Characterization, Metall. Mater. Trans. A, 2002, 33(10), p 3227–3234CrossRefGoogle Scholar
  11. 11.
    M.L. Grant, P.J. Withers, G. Baxter, and M. Preuss, Thermal Relaxation of Residual Stresses in Nickel-Based Superalloy Inertia Friction Welds, Metall. Mater. Trans. A, 2011, 42A, p 2301–2311Google Scholar
  12. 12.
    M. Maalekian, E. Kozeschnik, H.P. Brantner, and H. Cerjak, Comparative Analysis of Heat Generation in Friction Welding of Steel Bars, Acta Mater., 2008, 56(12), p 2843–2855CrossRefGoogle Scholar
  13. 13.
    J.S. Tiley, D.W. Mahaffey, T. Alam, T. Rojhirunsakool, O. Senkov, T. Parthasarthy, and R. Banerjee, Strengthening Mechanisms in an Inertia Friction Welded Nickel-Base Superalloy, Mater. Sci. Eng. A, 2016, 662, p 26–35CrossRefGoogle Scholar
  14. 14.
    M. Preuss, P.J. Withers, and G.J. Baxter, A Comparison of Inertia Friction Welds in Three Nickel Base Superalloys, Mater. Sci. Eng. A, 2006, 437(1), p 38–45CrossRefGoogle Scholar
  15. 15.
    O. Iracheta, C.J. Bennett, and W. Sun, Characterization of Material Property Variation Across an Inertia Friction Welded CrMoV Steel Component Using the Inverse Analysis of Nanoindentation Data, Int. J. Mech. Sci., 2016, 107, p 253–263CrossRefGoogle Scholar
  16. 16.
    Z. Yuanzhi, Y. Zhimin, L. Dongmei, L. Junchao, and Z. Xiang, Microstructure and Property of Ni76Cr19AlTi Side in Inertia Friction Weld Joint of the Superalloy Ni76Cr19AlTi and the Martensite Stainless Steel 4Cr10Si2Mo, ISIJ Int., 2010, 50(11), p 1666–1670CrossRefGoogle Scholar
  17. 17.
    Z. Yuanzhi, Z. Zhe, X. Zhidong, Y. Zhimin, W. Zhifang, and Y. Wenqing, Microstructural Evolution in 4Cr10Si2Mo at the 4Cr10Si2Mo/Nimomic 80A Weld Joint by Inertia Friction Welding, J. Alloys Compd., 2009, 476, p 341–347CrossRefGoogle Scholar
  18. 18.
    F. Daus, H.Y. Li, G. Baxter, S. Bray, and P. Bowen, Mechanical and Microstructural Assessments of RR1000 to IN718 Inertia Welds: Effects of Welding Parameters, Mater. Sci. Technol., 2007, 23(12), p 1424–1432CrossRefGoogle Scholar
  19. 19.
    L. D’Alvise, E. Massoni, and S.J. Walloe, Finite Element Modelling of the Inertia Friction Welding Process Between Dissimilar Materials, J. Mater. Process. Technol., 2002, 125-126, p 387–391CrossRefGoogle Scholar
  20. 20.
    B. Grant, M. Preuss, P.J. Withers, G. Baxter, and M. Rowlson, Finite Element Process Modelling of Inertia Friction Welding Advanced Nickel-Based Superalloy, Mater. Sci. Eng. A, 2009, 513-514(C), p 366–375CrossRefGoogle Scholar
  21. 21.
    M. Kessler, S. Suenger, M. Haubold, and M.F. Zaeh, Modeling of Upset and Torsional Moment During Inertia Friction Welding, J. Mater. Process. Technol., 2016, 227, p 34–40CrossRefGoogle Scholar
  22. 22.
    L. Wang, M. Preuss, P.J. Withers, G. Baxter, and P. Wilson, Energy-Input-Based Finite-Element Process Modeling of Inertia Welding, Metall. Mater. Trans. B, 2005, 36(4), p 513–523CrossRefGoogle Scholar
  23. 23.
    R.P. Turner, D. Howe, B. Thota, R.M. Ward, H.C. Basoalto, and J.W. Brooks, Calculating the Energy Required to Undergo the Conditioning Phase of a Titanium Alloy Inertia Friction Weld, J. Manuf. Process., 2016, 24, p 186–194CrossRefGoogle Scholar
  24. 24.
    C. Liu, H.Y. Zhu, and C.L. Dong, Internal Residual Stress Measurement on Inertia Friction Welding of Nickel-Based Superalloy, Sci. Technol. Weld. Join., 2014, 19(5), p 408–415CrossRefGoogle Scholar
  25. 25.
    L.F. Nie, L.W. Zhang, Z. Zhu, and W. Xu, Microstructure Evolution Modeling of FGH96 Superalloy During Inertia Friction Welding Process, Finite Elem. Anal. Des., 2014, 80, p 63–68CrossRefGoogle Scholar
  26. 26.
    D.W. Mahaffey, O.N. Senkov, R. Shivpuri, and S.L. Semiatin, Effect of Process Variables on the Inertia Friction Welding of Superalloys LSHR and Mar-M247, Metall. Mater. Trans. A, 2016, 47(8), p 3981–4000CrossRefGoogle Scholar
  27. 27.
    C. Zhang, L. Zhang, M. Li, W. Shen, and S. Gu, Effects of Microstructure and Gamma’ Distribution on the Hot Deformation Behavior for a Powder Metallurgy Superalloy FGH96, J. Mater. Res., 2014, 29(23), p 2799–2808CrossRefGoogle Scholar
  28. 28.
    Z.W. Huang, H.Y. Li, M. Preuss, M. Karadge, P. Bowen, S. Bray, and G. Baxter, Inertia Friction Welding Dissimilar Nickel-Based Superalloys Alloy 720Li to IN718, Metall. Mater. Trans. A, 2007, 38(7), p 1608–1620CrossRefGoogle Scholar
  29. 29.
    Y.Q. Ning, M.W. Fu, and W. Yao, Recrystallization of the Hot Isostatic Pressed Nickel-Base Superalloy FGH4096. II: Characterization and Application, Mater. Sci. Eng. A, 2012, 539, p 101–106CrossRefGoogle Scholar
  30. 30.
    Y.Q. Ning, Z.K. Yao, M.W. Fu, and H.Z. Guo, Recrystallization of the Hot Isostatic Pressed Nickel-Base Superalloy FGH4096: I. Microstructure and Mechanism, Mater. Sci. Eng. A, 2011, 528(28), p 8065–8070CrossRefGoogle Scholar
  31. 31.
    C.L. Qiu, M.M. Attallah, X.H. Wu, and P. Andrews, Influence of Hot Isostatic Pressing Temperature on Microstructure and Tensile Properties of a Nickel-Based Superalloy Powder, Mater. Sci. Eng. A, 2013, 564, p 176–185CrossRefGoogle Scholar
  32. 32.
    Y.Q. Chen, E. Francis, J. Robson, M. Preuss, and S.J. Haigh, Compositional Variations for Small-Scale Gamma Prime (γ’) Precipitates Formed at Different Cooling Rates in an Advanced Ni-Based Superalloy, Acta Mater., 2015, 85, p 199–206CrossRefGoogle Scholar
  33. 33.
    Y.Q. Chen, T.J.A. Slater, E.A. Lewis, E.M. Francis, M.G. Burke, M. Preuss, and S.J. Haigh, Measurement of Size-Dependent Composition Variations for Gamma Prime (‘) Precipitates in an Advanced Nickel-Based Superalloy, Ultramicroscopy, 2014, 144, p 1–8CrossRefGoogle Scholar
  34. 34.
    Z.W. Huang, H.Y. Li, G. Baxter, S. Bray, and P. Bowen, Electron Microscopy Characterization of the Weld Line Zones of an Inertia Friction Welded Superalloy, J. Mater. Process. Technol., 2011, 211(12), p 1927–1936CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Chi Zhang
    • 1
  • Wenfei Shen
    • 1
  • Liwen Zhang
    • 1
  • Yingnan Xia
    • 1
  • Ruiqin Li
    • 1
  1. 1.School of Materials Science and EngineeringDalian University of TechnologyDalianChina

Personalised recommendations