Journal of Materials Engineering and Performance

, Volume 26, Issue 4, pp 1890–1899 | Cite as

Improving the Thermal Shock Resistance of Thermal Barrier Coatings Through Formation of an In Situ YSZ/Al2O3 Composite via Laser Cladding

  • Zohre Soleimanipour
  • Saeid Baghshahi
  • Reza Shoja-razavi
Article

Abstract

In the present study, laser cladding of alumina on the top surface of YSZ thermal barrier coatings (TBC) was conducted via Nd:YAG pulsed laser. The thermal shock behavior of the TBC before and after laser cladding was modified by heating at 1000 °C for 15 min and quenching in cold water. Phase analysis, microstructural evaluation and elemental analysis were performed using x-ray diffractometry, scanning electron microscopy (SEM), and energy-dispersive spectroscopy. The results of thermal shock tests indicated that the failure in the conventional YSZ (not laser clad) and the laser clad coatings happened after 200 and 270 cycles, respectively. The SEM images of the samples showed that delamination and spallation occurred in both coatings as the main mechanism of failure. Formation of TGO was also observed in the fractured cross section of the samples, which is also a main reason for degradation. Thermal shock resistance in the laser clad coatings improved about 35% after cladding. The improvement is due to the presence of continuous network cracks perpendicular to the surface in the clad layer and also the thermal stability and high melting point of alumina in Al2O3/ZrO2 composite.

Keywords

air plasma spray laser clad thermal barrier coating thermal shock test YSZ 

References

  1. 1.
    N.V. Patel, E.H. Jordan, S. Sridharan, and M. Gell, Cyclic Furnace Testing and Life Predictions of Thermal Barrier Coating Spallation Subject to a Step Change in Temperature or in Cycle Duration, Surf. Coat. Technol., 2015, 275, p 384–391CrossRefGoogle Scholar
  2. 2.
    M. Zhaia, D. Lia, Y. Zhao, X. Zhong, F. Shao, H. Zhao, C. Liu, and S. Tao, Comparative Study on Thermal Shock Behavior of Thick Thermal Barrier Coatings Fabricated with Nano-Based YSZ Suspension and Agglomerated Particles, Ceram. Int., 2016, 42, p 12172–12179CrossRefGoogle Scholar
  3. 3.
    J. Wu, H.B. Guo, L. Zhou, L. Wang, and S.K. Gong, Microstructure and Thermal Properties of Plasma Sprayed Thermal Barrier Coatings from Nanostructured YSZ, J. Therm. Spray Technol., 2010, 19, p 1186–1194CrossRefGoogle Scholar
  4. 4.
    R. Liu, S. Yuan, Z. Wang, Y. Zhao, M. Zhang, and L. Shi, Graded YSZ/Al2O3 Hot Corrosion Resistant Coating with Enhanced Thermal Shock Resistance, RSC Adv., 2013, 3, p 17034–17038CrossRefGoogle Scholar
  5. 5.
    X. Song, Z. Liu, T. Suhonen, T. Varis, L. Huang, X. Zheng, and Y. Zeng, Effect of Melting State on the Thermal Shock Resistance and Thermal Conductivity of APS ZrO2-7.5 wt.% Y2O3 Coatings, Surf. Coat. Technol., 2015, 270, p 132–138CrossRefGoogle Scholar
  6. 6.
    H. Jamali, R. Mozafarinia, R. Shoja Razavi, and R. Ahmadi-Pidani, Comparison of Thermal Shock Resistances of Plasma-Sprayed Nanostructured and Conventional Yttria Stabilized Zirconia Thermal Barrier Coatings, Ceram. Int., 2012, 38, p 6705–6712CrossRefGoogle Scholar
  7. 7.
    R. Ghasemin, R. Shoja-Razavi, R. Mozafarinia, and H. Jamali, The Influence of Laser Treatment on Thermal Shock Resistance of Plasma-Sprayed Nanostructured Yttria Stabilized Zirconia Thermal Barrier Coatings, Ceram. Int., 2014, 40, p 347–355CrossRefGoogle Scholar
  8. 8.
    C. Giolli, A. Scrivani, G. Rizzi, F. Borgioli, G. Bolelli, and L. Lusvarghi, Failure Mechanism for Thermal Fatigue of Thermal Barrier Coating Systems, J. Therm. Spray Technol., 2009, 18, p 223–230CrossRefGoogle Scholar
  9. 9.
    R. Eriksson, H. Brodin, S. Johansson, L. Östergren, and X.H. Li, Fractographic and Microstructural Study of Isothermally and Cyclically Heat Treated Thermal Barrier Coatings, Surf. Coat. Technol., 2014, 243, p 82–90CrossRefGoogle Scholar
  10. 10.
    N.M. Yanar, G.H. Meier, and F.S. Pettit, The Influence of Platinum on the Failure of EBPVD YSZ TBCs on NiCoCrAlY Bond Coats, Scr. Mater., 2002, 46, p 325–330CrossRefGoogle Scholar
  11. 11.
    S. Guo and Y. Kagawa, Isothermal and Cycle Properties of EB-PVD Yttria-Partially-Stabilized Zirconia Thermal Barrier Coatings at 1150 and 1300 °C, Ceram. Int., 2007, 33, p 373–378CrossRefGoogle Scholar
  12. 12.
    T.A. Dobbins, R. Knight, and M.J. Mayo, HVOF Thermal Spray Deposited Y2O3-Stabilized ZrO2 Coatings for Thermal Barrier Applications, J. Therm. Spray Technol., 2003, 12, p 214–225CrossRefGoogle Scholar
  13. 13.
    J.R.V. Garcial and T. Goto, Thermal Barrier Coatings Produced by Chemical Vapor Deposition, Sci. Technol. Adv. Mater., 2003, 4, p 397–402CrossRefGoogle Scholar
  14. 14.
    X. Chen, Y. Zhao, X. Fan, Y. Liu, B. Zou, Y. Wang, H. Ma, and X. Cao, Thermal Cycling Failure of New LaMgAl11O19/YSZ Double Ceramic Top Coat Thermal Barrier Coating Systems, Surf. Coat. Technol., 2011, 205, p 3293–3300CrossRefGoogle Scholar
  15. 15.
    Y. Bai, Z.H. Han, H.Q. Li, C. Xu, Y.L. Xu, Z. Wang, C.H. Ding, and J.F. Yan, High Performance Nanostructured ZrO2 Based Thermal Barrier Coatings Deposited by High Efficiency Supersonic Plasma Spraying, Appl. Surf. Sci., 2011, 257, p 7210–7216CrossRefGoogle Scholar
  16. 16.
    E. Sanchez, E. Bannier, V. Cantavella, M.D. Salvador, E. Klyatskina, J.Grzonka Morgiel, and A.R. Boccaccini, Deposition of Al2O3-TiO2 Nanostructured Powders by Atmospheric Plasma Spraying, J. Therm. Spray Technol., 2008, 17, p 329–337CrossRefGoogle Scholar
  17. 17.
    R. Ahmadi-Pidani, R. Shoja-Razavi, R. Mozafarinia, and H. Jamali, Improving the Thermal Shock Resistance of Plasma Sprayed CYSZ Thermal Barrier Coatings by Laser Surface Modification, Opt. Lasers Eng., 2012, 50, p 780–786CrossRefGoogle Scholar
  18. 18.
    Q. Cui, S.M. Seo, Y.S. Yoo, Z. Lu, and S.W. Myoung, Thermal Durability of Thermal Barrier Coatings with Bond Coat Composition in Cyclic Thermal Exposure, Surf. Coat. Technol., 2015, 284, p 69–74CrossRefGoogle Scholar
  19. 19.
    H. Dong, G.J. Yang, H.N. Cai, H. Ding, C.X. Li, and C.J. Li, The Influence of Temperature Gradient Across YSZ on Thermal Cyclic Lifetime of Plasma-Sprayed Thermal Barrier Coatings, Ceram. Int., 2015, 41, p 11046–11056CrossRefGoogle Scholar
  20. 20.
    M.R. Begley and H.N.G. Wadley, Delamination Resistance of Thermal Barrier Coatings Containing Embedded Ductile Layers, Acta Mater., 2012, 60, p 2497–2508CrossRefGoogle Scholar
  21. 21.
    X. Zhong, H. Zhao, C. Liu, L. Wang, and F. Shao, Improvement in Thermal Shock Resistance of Gadolinium Zirconate Coating by Addition of Nanostructured Yttria Partially-Stabilized Zirconia, Ceram. Int., 2015, 41, p 7318–7324CrossRefGoogle Scholar
  22. 22.
    J.H. Lee, P.C. Tsai, and C.L. Chang, Microstructure and Thermal Cyclic Performance of Laser Glazed Plasma-Sprayed Ceria-Yttria-Stabilized Zirconia Thermal Barrier Coatings, Surf. Coat. Technol., 2008, 202, p 5607–5612CrossRefGoogle Scholar
  23. 23.
    C. Ren, Y.D. He, and D.R. Wang, Cyclic Oxidation Behavior and Thermal Barrier Effect of YSZ-(Al2O3/YAG) Double-Layer TBCs Prepared by the Composite Sol-Gel Method, Surf. Coat. Technol., 2011, 206, p 1461–1468CrossRefGoogle Scholar
  24. 24.
    J.D. Kim and Y. Peng, Melt pool Shape and Dilution of Laser Cladding with Wire Feeding, J. Mater. Process. Technol., 2000, 104, p 284–293CrossRefGoogle Scholar
  25. 25.
    A. Afrasiabi, M. Saremi, and A. Kobayashi, A Comparative Study on Hot Corrosion Resistance of Three Types of Thermal Barrier Coatings: YSZ, YSZ + Al2O3 and YSZ/Al2O3, Mater. Sci. Eng. A, 2008, 478, p 264–269CrossRefGoogle Scholar
  26. 26.
    C. Batista, A. Portinha, R.M. Ribeiro, V. Teixeira, M.F. Costa, and C.R. Oliveira, Surface Laser-Glazing of Plasma-Sprayed Thermal Barrier Coatings, Appl. Surf. Sci., 2005, 9, p 247–313Google Scholar
  27. 27.
    C. Ren, Y.D. He, and D.R. Wang, Preparation and Characteristics of Three Layer YSZ-(YSZ/Al2O3)-YSZ TBCs, Appl. Surf. Sci., 2011, 257, p 6837–6842CrossRefGoogle Scholar
  28. 28.
    X.Q. Cao, R. Vassen, and D. Stoever, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24, p 1–10CrossRefGoogle Scholar
  29. 29.
    G.M. Pharr, Measurement of Mechanical Properties by Ultra-Low Load Indentation, Mater. Sci. Eng., 1998, A253, p 151–159CrossRefGoogle Scholar
  30. 30.
    G. Di Girolamo, F. Marra, C. Blasi, E. Serra, and T. Valente, Microstructure, Mechanical Properties and Thermal Shock Resistance of Plasma Sprayed Nanostructured Zirconia Coatings, Ceram. Int., 2011, 37, p 2711–2717CrossRefGoogle Scholar
  31. 31.
    L. Wang, Y. Wang, X.G. Sun, J.Q. He, Z.Y. Pan, and C.H. Wang, Thermal Shock Behavior of 8YSZ and Double-Ceramic-Layer La2Zr2O7/8YSZ Thermal Barrier Coatings Fabricated by Atmospheric Plasma Spraying, Ceram. Int., 2012, 38, p 3595–3606CrossRefGoogle Scholar
  32. 32.
    X. Chen, Y. Zhang, X. Zhong, Z. Xu, J. Zhang, Y. Cheng, Y. Zhao, Y. Liu, X. Fan, Y. Wang, H. Ma, and X. Cao, Thermal Cycling Behaviors of the Plasma Sprayed Thermal Barrier Coatings of Hexaluminates with Magnetoplumbite Structure, J. Eur. Ceram. Soc., 2010, 30, p 1649–1657CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Zohre Soleimanipour
    • 1
  • Saeid Baghshahi
    • 1
  • Reza Shoja-razavi
    • 2
  1. 1.Department of Materials Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Materials EngineeringMalek-Ashtar University of TechnologyShahinshahrIran

Personalised recommendations