Advertisement

Journal of Materials Engineering and Performance

, Volume 26, Issue 4, pp 1551–1561 | Cite as

The Microstructure and Wear Resistance of Microarc Oxidation Composite Coatings Containing Nano-Hexagonal Boron Nitride (HBN) Particles

  • Zhenwei Li
  • Shichun Di
Article

Abstract

The composite coatings containing HBN were prepared on 2024 aluminum alloy by microarc oxidation in the electrolyte with nano-HBN particles. The microstructure, surface roughness, phase composition, hardness, adhesion strength and wear resistance of composite coatings were analyzed by SEM, EDS, laser confocal microscope, XRD, Vickers hardness tester, scratch test and ball-on-disc abrasive tests. The results revealed that composite coatings were mainly composed of γ-Al2O3, α-Al2O3, mullite and HBN. With increasing the content of HBN particles in the electrolyte, the size and number of the pores on the surface of composite coatings decreased significantly. Compared to the MAO coatings without HBN, the composite coatings exhibited better wear resistance, as demonstrated by the lower friction coefficient and the lower wear rate.

Keywords

2024 aluminum alloy adhesion strength composite ceramic coatings microarc oxidation nano-HBN particles wear resistance 

Notes

Acknowledgments

The authors gratefully acknowledge the Micro/Nano Technology Research Center, Harbin Institute of Technology for Device support. This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

References

  1. 1.
    K.C. Tekin, U. Malayoglu, and S. Shrestha, Tribological Behaviour of Plasma Electrolytic Oxide Coatings on Ti6Al4V and cp-Ti Alloys, Surf. Eng., 2016, 32(6), p 435–442CrossRefGoogle Scholar
  2. 2.
    Z. Shao, B. Kong, Y. Zhao, and Z. Cai, Composite Film of Magnesium Alloy Chemical Conversion Microarc Oxidation, Surf. Eng., 2014, 30(12), p 893–899CrossRefGoogle Scholar
  3. 3.
    P. Wang, J.P. Li, Y.C. Guo, Z. Yang, and J.L. Wang, Ceramic Coating Formation on High Si Containing Al Alloy by PEO Process, Surf. Eng., 2016, 32(6), p 428–434CrossRefGoogle Scholar
  4. 4.
    R.N. Rao, S. Das, D.P. Mondal, and G. Dixit, Effect of Heat Treatment on the Sliding Wear Behavior of Aluminium Alloy (Al-Zn-Mg) Hard Particle Composite, Tribol Int, 2010, 43(1–2), p 330–339CrossRefGoogle Scholar
  5. 5.
    C.C. Tseng, J.L. Lee, T.H. Kuo, S.N. Kuo, and K.H. Tseng, The Influence of Sodium Tungstate Concentration and Anodizing Conditions on Microarc Oxidation (MAO) Coatings for Aluminum Alloy, Surf. Coat. Technol., 2012, 206(16), p 3437–3443CrossRefGoogle Scholar
  6. 6.
    A. Polat, M. Makaraci, and M. Usta, Influence of Sodium Silicate Concentration on Structural and Tribological Properties of Microarc Oxidation Coatings on 2017A Aluminum Alloy Substrate, J. Alloys Compd., 2010, 504(2), p 519–526CrossRefGoogle Scholar
  7. 7.
    C.J. Hu and M.H. Hsieh, Preparation of Ceramic Coatings on an Al-Si Alloy by the Incorporation of ZrO2 Particles in Microarc Oxidation, Surf. Coat. Technol., 2014, 258, p 275–283CrossRefGoogle Scholar
  8. 8.
    K. Nimura, T. Sugawara, T. Jibiki, S. Ito, and M. Shima, Surface Modification of Aluminum Alloy to Improve Fretting Wear Properties, Tribol. Int., 2016, 93(1), p 702–708CrossRefGoogle Scholar
  9. 9.
    Z.J. Wang, L. Wu, Y.L. Qi, W. Cai, and Z.H. Jiang, Self-lubricating Al2O3/PTFE Composite Coating Formation on Surface of Aluminium Alloy, Surf. Coat. Technol., 2010, 204(20), p 3315–3318CrossRefGoogle Scholar
  10. 10.
    M.H. Staia, E.S. Puchi Cabrera, A. Iost, A. Zairi, S. Belayer, and A. Van Gorp, Tribological Response of AA 2024-T3 Aluminium Alloy Coated with a DLC Duplex Coating, Tribol Int, 2015, 85, p 74–87CrossRefGoogle Scholar
  11. 11.
    O. Wanstrand, M. Larsson, and A. Kassman-Rudolphi, Mechanical and Tribological Properties of Vapour Deposited Low Friction Coatings on Ni Plated Substrates, Tribol Int, 2000, 33(10), p 737–742CrossRefGoogle Scholar
  12. 12.
    L. Wang, S. Wan, S.C. Wang, R.J.K. Wood, and Q.J. Xue, Gradient DLC-Based Nanocomposite Coatings as a Solution to Improve Tribological Performance of Aluminum Alloy, Tribol Lett, 2010, 38(2), p 155–160CrossRefGoogle Scholar
  13. 13.
    Y.H. Gu, W.M. Xiong, C.Y. Ning, and J. Zhang, Residual Stresses in Microarc Oxidation Ceramic Coatings on Biocompatible AZ31 Magnesium Alloys, J. Mater. Eng. Perform., 2012, 21(6), p 1085–1090Google Scholar
  14. 14.
    M. Wang, S.Y. Guo, Y.L. Wang, H. Wang, Y.J. Yao, and T.X. Min, Facile Fix of Porous Composite Titania Photocatalytic Film by PEO, Surf. Eng., 2016, 32(6), p 423–427CrossRefGoogle Scholar
  15. 15.
    W. Yang, J.L. Wang, D.P. Xu, P.L. Ke, and J.P. Li, Microstructure and Properties of Duplex Coatings on Magnesium Alloy, Surf. Eng., 2016, 32(8), p 601–606CrossRefGoogle Scholar
  16. 16.
    M.A. Chen, Y.C. Ou, C.Y. Yu, C. Xiao, and S.Y. Liu, Corrosion Performance of Epoxy/BTESPT/MAO Coating on AZ31 Alloy, Surf. Eng., 2016, 32(1), p 38–46CrossRefGoogle Scholar
  17. 17.
    Y.L. Cheng, Z.G. Xue, Q. Wang, X.Q. Wu, E. Matykina, P. Skeldon, and G.E. Thompson, New Findings on Properties of Plasma Electrolytic Oxidation Coatings From Study of an Al-Cu-Li Alloy, Electrochim. Acta, 2013, 107, p 358–378CrossRefGoogle Scholar
  18. 18.
    J. Martin, P. Leone, A. Nomine, D.V. Renaux, G. Henrion, and T. Belmonte, Influence of Electrolyte Ageing on the Plasma Electrolytic Oxidation of Aluminium, Surf. Coat. Technol., 2015, 269, p 36–46CrossRefGoogle Scholar
  19. 19.
    D. Sabitted November, M. Ehteshamzadeh, and S.M.M. Mirhosseini, Effect of NaOH on the Structure and Corrosion Performance of Alumina and Silia PEO Coatings on Aluminum, J. Mater. Eng. Perform., 2012, 21(10), p 2195–2202CrossRefGoogle Scholar
  20. 20.
    H. Khanmohammadi, S.R. Allahkaram, N. Towhidi, and A.M. Rashidfarokhi, Preparation of PEO Coating on Ti6Al4V in Different Electrolytes and Evaluation of Its Properties, Surf. Eng., 2016, 32(6), p 448–456CrossRefGoogle Scholar
  21. 21.
    M. Sieber, F. Simahen, I. Scharf, and T. Lampke, Formation of a Spinel Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation, J. Mater. Eng. Perform., 2016, 25(3), p 1157–1162CrossRefGoogle Scholar
  22. 22.
    Y.J. Guan, Y. Xia, and F.T. Xu, Interface Fracture Property of PEO Ceramic Coatings on Aluminum Alloy, Surf. Coat. Technol., 2008, 202(17), p 4204–4209CrossRefGoogle Scholar
  23. 23.
    M. Mu, X.J. Zhou, Q. Xiao, J. Liang, and X.D. Huo, Preparation and Tribological Properties of Self-lubricating TiO2/graphite Composite Coating on TI6Al4V Alloy, Appl. Surf. Sci., 2012, 258(22), p 8570–8576CrossRefGoogle Scholar
  24. 24.
    M. Mu, J. Liang, X.J. Zhou, and Q. Xiao, One-step Preparation of TiO2/MoS2 Composite Coating on Ti6Al4V Alloy by Plasma Electrolytic Oxidation and Its Tribological Properties, Surf. Coat. Technol., 2013, 214, p 124–130CrossRefGoogle Scholar
  25. 25.
    H. Li, Y.Z. Sun, and J. Zhang, Effect of ZrO2 Particle on the Performance of Micro-arc Oxidation Coatings on Ti6Al4V, Appl. Surf. Sci., 2015, 342, p 183–190CrossRefGoogle Scholar
  26. 26.
    A. Mandelli, M. Bestetti, A.D. Forno, N. Lecis, S.P. Trasatti, and M. Trueba, A Composite Coating for Corrosion Protection of AM60B Magnesium Alloy, Surf. Coat. Technol., 2011, 205(19), p 4459–4465CrossRefGoogle Scholar
  27. 27.
    K.J. Ma, M.M.S.A. Bosta, and W.T. Wu, Preparation of Self-lubricating Composite Coatings Through a Micro-arc Plasma Oxidation with Graphite in Electrolyte Solution, Surf. Coat. Technol., 2014, 259, p 318–324CrossRefGoogle Scholar
  28. 28.
    Y. Bai, K.A. Kim, S. Park, S.J. Lee, T.S. Bae, and M.H. Lee, In Situ Composite Coating of Titania-hydroxyapatite on Titanium Substrate by Micro-arc Oxidation Coupled with Electrophoretic Deposition Processing, Materials Science and Engineering B, 2011, 176(15), p 1213–1221CrossRefGoogle Scholar
  29. 29.
    Y.Q. Wang, X.D. Jiang, and C.X. Pan, In Situ Preparation of a TiO2/Eu2O3 Composite Film Upon Ti Alloy Substrate by Micro-arc Oxidation and Its Photo-catalytic Property, J. Alloys Compd., 2012, 538, p 16–20CrossRefGoogle Scholar
  30. 30.
    S.Y. Wang, N.C. Si, Y.P. Xia, and L. Liu, Influence of Nano-SiC on Microstructure and Property of MAO Coating Formed on AZ91D Magnesium Alloy, Trans. Nonferrous Met. Soc. China, 2015, 25(6), p 1926–1934CrossRefGoogle Scholar
  31. 31.
    B. Yin, Z.J. Peng, J. Liang, K.J. Jin, S.Y. Zhu, J. Yang, and Z.H. Qiao, Tribological Behavior and Mechanism of Self-lubricating Wear-Resistant Composite Coatings Fabricated by One-step Plasma Electrolytic Oxidation, Tribol Int, 2016, 97, p 97–107CrossRefGoogle Scholar
  32. 32.
    A.L. Yerokhin, L.O. Snizhko, N.L. Gurevina, A. Leyland, A. Pilkington, and A. Matthews, Discharge Characterization in Plasma Electrolytic Oxidation of Aluminium, J. Phys. D. Appl. Phys., 2003, 36(17), p 2110–2120CrossRefGoogle Scholar
  33. 33.
    C.S. Dunleavy, I.O. Golosnoy, J.A. Curran, and T.W. Clyne, Characterisation of Discharge Events During Plasma Electrolytic Oxidation, Surf. Coat. Technol., 2009, 203(22), p 3410–3419CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  1. 1.School of Mechatronics EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations