Advertisement

Journal of Materials Engineering and Performance

, Volume 26, Issue 4, pp 1540–1550 | Cite as

Mechanically Assisted Solid-State Mixing and Spark Plasma Sintering for Fabrication of Bulk Nanocomposite (WC/7(10Co/4Cr))-Based ZrO2 Systems

  • M. Sherif El-Eskandarany
  • Abdulsalam Al-Hazza
  • L. A. Al-Hajji
Article
  • 151 Downloads

Abstract

Mechanically induced solid-state mixing, using high-energy ball milling technique, was employed for preparing WC/7 wt.% (10Cr/4Cr) solid-solution powders. The solid-solution powders obtained after 50 h of milling were mechanically mixed for 50 h together with small weight fractions (0-7 wt.%) of (ZrO2 + 1.5 wt.% Y2O3) powders. The powders were then consolidated in vacuum under a uniaxial pressure of 30 MPa at 1250 °C, using spark plasma sintering. The consolidated bulk samples were nearly full dense and maintained their nanocrystalline structure after this consolidation step. The results showed that the consolidated samples over the entire range of ZrO2 concentrations (0–7 wt.%) had low values for Young’s modulus (297–318 GPa) due to their nanocrystalline structures. Moreover, the WC/7 wt.% (10Cr/4Cr)/7(ZrO2-1.5 mol.% Y2O3) showed excellent wear resistance, indexed by its low-value friction coefficient (~0.29).

Keywords

fracture toughness mechanical ball milling nanoindentations nanotechnology powder technology 

Notes

Acknowledgments

Appreciation is extended to the Kuwait Government through the Kuwait Institute for Scientific Research for purchasing all of the equipment used in the present work, using the budget dedicated for the Project (P-KISR-06-04) led by the first author of Establishing Nanotechnology Center in KISR.

References

  1. 1.
    J.S. Benjamin, Mechanical Alloying, Sci. Am., 1976, 234, p 40–49CrossRefGoogle Scholar
  2. 2.
    C.C. Koch and Y.S. Cho, Nanocrystals by High Energy Ball Milling, Nanostruct. Mater., 1992, 1, p 207–212CrossRefGoogle Scholar
  3. 3.
    M.S. El-Eskandarany, Mechanical Alloying for Fabrication of Advanced Engineering Materials, 2nd ed., Elsevier Inc, Philadelphia, PA, 2015 (19103-2899)Google Scholar
  4. 4.
    M.S. El-Eskandarany, Mechanical Solid State Mixing for Synthesizing of SiCp/Al Nanocomposites, J. Alloys Comp., 1998, 279, p 263–271CrossRefGoogle Scholar
  5. 5.
    R. Md Raihanuzzaman, Z. Xie, S.J. Hong, and R. Ghomashchi, Powder Refinement, Consolidation and Mechanical Properties of Cemented Carbides—An Overview, Powder Technol., 2014, 261, p 1–13CrossRefGoogle Scholar
  6. 6.
    R. Md Raihanuzzaman, S.-T. Han, R. Ghomashchi, H.-S. Kim, and S.-J. Hong, Conventional Sintering of WC with Nano-Sized Co binder: Characterization and Mechanical Behavior, Int. J. Refract. Metal. Hard Mater., 2015, 53, p 2–6CrossRefGoogle Scholar
  7. 7.
    W. Su, Y. Sun, H. Wang, X. Zhang, and J. Ruan, Preparation and sintering of WC–Co composite powders for coarse grained WC–8Co hardmetals, Int. J. Refract. Metal. Hard Mater., 2014, 45, p 80–85CrossRefGoogle Scholar
  8. 8.
    C. Suryanarayana and N. Al-Aqeeli, Prog. Mater Sci., 2013, 58, p 383–410CrossRefGoogle Scholar
  9. 9.
    D. Zheng, X. Li, X. Ai, C. Yang, and Y. Li, WC–Si3N4 composites prepared by two-step spark plasma sintering, Int. J. Refract. Metals Hard Mater., 2015, 50, p 133–139CrossRefGoogle Scholar
  10. 10.
    H. Engqvist, G.A. Botton, N. Axe´n, and S. Hogmark, A study of grain boundaries in a binderless cemented carbide, Int. J. Refract. Metals Hard Mater., 1998, 16, p 309–313CrossRefGoogle Scholar
  11. 11.
    El-Eskandarany M. Sherif, Fabrication of nanocrystalline WC and nanocomposite WC–MgO refractory materials at room temperature, J. Alloy Comp., 2000, 296, p 175–182CrossRefGoogle Scholar
  12. 12.
    M.S. El-Eskandarany, Top–down approach accompanied with mechanical solid-state mixing for producing nanocomposite WC/Al2O3 materials, Int. J. Nanopart., 2009, 2, p 14–22Google Scholar
  13. 13.
    N. Ünal, F. Kern, M.L. Öveçğlu, and R. Gadow, Influence of WC particles on the microstructural and mechanical properties of 3 mol% Y2O3 stabilized ZrO2 matrix composites produced by hot pressing, J. Eur. Ceram. Soc., 2011, 31, p 2267–2275CrossRefGoogle Scholar
  14. 14.
    S. Huang, K. Vanmeensel, O.V. Der Biest, and J. Vleugels, Sintering, thermal stability and mechanical properties of ZrO2-WC composites obtained by pulsed electric current sintering, Front. Mater. Sci., 2011, 5, p 50–56CrossRefGoogle Scholar
  15. 15.
    Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. ASTM Standard D792-00. Vol 81.01. American Society for Testing and Materials. West Conshohocken. PA.Google Scholar
  16. 16.
    M.B. Raviathul, V.C. Srivastava, and N.K. Mukhopadhyay, Effect of milling time on structural evolution and mechanical properties of garnet reinforced EN AW6082 composites, Metall. Mater. Trans. A, 2014, doi: 10.1007/s11661-014-2685-3 Google Scholar
  17. 17.
    G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements, J. Am. Ceram. Soc., 1981, 64, p 533–540CrossRefGoogle Scholar
  18. 18.
    M.T. Laugier, Surface toughening of ceramics, J. Mater. Sci. Lett., 1986, 5, p 252CrossRefGoogle Scholar
  19. 19.
    M.T. Laugier, New formula for indentation toughness in ceramics, J. Mater. Sci. Lett., 1987, 6, p 355–356CrossRefGoogle Scholar
  20. 20.
    T. Venkateswaran, D. Sakar, and B. Basu, Tribological properties of WC–ZrO2 nanocomposites, J. Am. Ceram. Soc., 2005, 88, p 691–697CrossRefGoogle Scholar
  21. 21.
    B. Basu, J. Vleugels, and O.V. der Biest, Processing and mechanical properties of ZrO2–TiB2 composites, J. Eur. Ceram. Soc., 2005, 25, p 3629–3637CrossRefGoogle Scholar
  22. 22.
    R.C. Garvie, R.H. Hannink, and R.T. Pascoe, Ceramic steel?, Nature, 1975, 258, p 703–704CrossRefGoogle Scholar
  23. 23.
    H. Miyazaki, Yoshizawa Yu-ichi, and K. Hirao, Effect of the volume ratio of zirconia and alumina on the mechanical properties of fibrous zirconia/alumina bi-phase composites prepared by co-extrusion, J. Eur. Ceram. Soc., 2006, 26, p 3539–3546CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • M. Sherif El-Eskandarany
    • 1
  • Abdulsalam Al-Hazza
    • 1
  • L. A. Al-Hajji
    • 1
  1. 1.Nanotechnology and Advanced Materials Program, Energy and Building Research CenterKuwait Institute for Scientific ResearchKuwaitState of Kuwait

Personalised recommendations