Journal of Materials Engineering and Performance

, Volume 26, Issue 4, pp 1726–1734 | Cite as

Microstructure Evolution and Mechanical and Corrosion Behavior of Accumulative Roll Bonded Mg-2%Zn/Al-7075 Multilayered Composite

  • Gajanan Anne
  • M. R. Ramesh
  • H. Shivananda Nayaka
  • Shashi Bhushan Arya
  • Sandeep Sahu


Multilayered composite of Mg-2%Zn/Al-7075 was developed by accumulative roll bonding (ARB) of wrought Mg-2%Zn and aluminum 7075 alloy. The Mg-2%Zn/Al-7075 multilayered composite exhibited density of 2295 kg/m3 and an average grain size of 1 and 1.3 μm in Mg-2%Zn and Al-7075 layers, respectively. A thorough microstructural characterization was performed on the composites by scanning electron microscope, electron backscatter diffraction (EBSD), transmission electron microscope and phase analysis by x-ray diffraction. In addition, mechanical properties were evaluated by microhardness and tensile tests. Corrosion behavior of the multilayered composite was examined using electrochemical polarization test. EBSD analysis showed the presence of ultrafine grains with high-angle grain boundaries. The composite exhibited a significant improvement in ultimate tensile strength (~1.82 times) and elongation (~1.5 times) as compared with Mg-2%Zn alloy, after four-pass ARB process.


accumulative roll bonding electron backscatter diffraction multilayered composites potentiodynamic polarization transmission electron microscopy ultrafine grain 



The authors gratefully appreciate the support of Department of Materials Engineering, Indian Institute of Science Bangalore, India; Advanced Center for Material Science, Indian Institute of Technology Kanpur, India; and Exclusive Magnesium Private limited, Hyderabad, India, providing various testing facility for research work.


  1. 1.
    G.L. Song and A. Atrens, Corrosion Mechanisms of Magnesium Alloys, Adv. Eng. Mater., 1999, 2648, p 10–33Google Scholar
  2. 2.
    R. Valiev, Nanostructuring of Metals by Severe Plastic Deformation for Advanced Properties, Nat. Mater., 2004, 3(8), p 511–516CrossRefGoogle Scholar
  3. 3.
    R.Z. Valiev, N. Krasilnikov, and N. Tsenev, Plastic Deformation of Alloys with Submicron-Grained Structure, Mater. Sci. Eng. A, 1991, 137, p 35–40CrossRefGoogle Scholar
  4. 4.
    Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel Ultra-High Straining Process for Bulk Materials Development of the Accumulative Roll-Bonding (ARB) Process, Acta Mater., 1999, 47(2), p 579–583CrossRefGoogle Scholar
  5. 5.
    N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa, Ultra-Fine Grained Bulk Steel Produced by Accumulative Roll-Bonding (ARB) Process, Scr. Mater., 1999, 40(7), p 795–800CrossRefGoogle Scholar
  6. 6.
    P. Hidalgo-Manrique, C.M. Cepeda-Jime, O.A. Ruano, and F. Carren, Effect of Warm Accumulative Roll Bonding on the Evolution of Microstructure, Texture and Creep Properties in the 7075 Aluminium Alloy, Mater. Sci. Eng. A, 2012, 556, p 287–294CrossRefGoogle Scholar
  7. 7.
    L.N. Tsuji and N. Kamikawa, Microstructure Homogeneity in Various Metallic Materials Heavily Deformed by Accumulative Roll-Bonding, Mater. Sci. Eng. A, 2006, 423, p 331–342CrossRefGoogle Scholar
  8. 8.
    S. Roy, B.R. Nataraj, S. Suwas, S. Kumar, and K. Chattopadhyay, Microstructure and Texture Evolution During Accumulative Roll Bonding of Aluminium Alloys AA2219/AA5086 Composite Laminates, J. Mater. Sci., 2012, 47, p 6402–6419CrossRefGoogle Scholar
  9. 9.
    Y. Xin, R. Hong, B. Feng, H. Yu, Y. Wu, and Q. Liu, Fabrication of Mg/AL Multilayer Plates Using an Accumulative Extrusion Bonding Process, Mater. Sci. Eng. A, 2015, 640, p 210–216CrossRefGoogle Scholar
  10. 10.
    N. Tsuji, Y. Saito, S.H. Lee, and Y. Minamino, ARB (Accumulative Roll-Bonding) and Other New Techniques to Produce Bulk Ultrafine Grained Materials, Adv. Eng. Mater., 2003, 5, p 338–344CrossRefGoogle Scholar
  11. 11.
    S. Lee, Y. Saito, N. Tsuji, H. Utsunomiya, and T. Sakai, Role of Shear Strain in Ultragrain Refinement by Accumulative Roll-Bonding (ARB) Process, Scr. Mater., 2002, 46, p 281–285CrossRefGoogle Scholar
  12. 12.
    P. Hidalgo-Manrique, A. Orozco-Caballero, C.M. Cepeda-Jimenez, O.A. Ruano, and F. Carreno, Influence of the Accumulative Roll Bonding Process Severity on the Microstructure and Superplastic Behaviour of 7075 Al Alloy, J. Mater. Sci. Technol., 2016, 32(8), p 774–782CrossRefGoogle Scholar
  13. 13.
    M.M. Avedesian, Hugh Baker, Magnesium and Magnesium Alloys, ASM Specialty Handbook, Metals Park, 1999Google Scholar
  14. 14.
    T.C. Lowe and R.Z. Valiev, Investigations and Applications of Severe Plastic Deformation, Kluwer, Dordrecht, 2000CrossRefGoogle Scholar
  15. 15.
    J. Roohollah, A. Sajjad, M.T. Reza, and B. Niroumand, Effect of Particle Size on Microstructure and Mechanical Properties of Composites Produced by ARB Process, Mater. Sci. Eng. A, 2011, 528, p 2143–2148CrossRefGoogle Scholar
  16. 16.
    E.A. Starke and J.T. Staley, Application of Modern Aluminum Alloys to Aircraft, Prog. Aerosp. Sci., 1996, 32, p 131–172CrossRefGoogle Scholar
  17. 17.
    Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong, Ultra-Fine Grained Bulk Aluminum Produced by Accumulative Roll-Bonding (arb) Process, Scr. Mater., 1998, 39, p 1221–1227CrossRefGoogle Scholar
  18. 18.
    M.C. Chen, H.C. Hsieh, and W. Wu, The Evolution of Microstructures and Mechanical Properties During Accumulative Roll Bonding of Al/Mg Composite, J. Alloys Compd., 2006, 416, p 169–172CrossRefGoogle Scholar
  19. 19.
    H. Chang, M.Y. Zheng, C. Xub, G.D. Fan, H.G. Brokmeier, and K. Wu, Microstructure and Mechanical Properties of the Mg/Al Multilayer Fabricated by Accumulative Roll Bonding (ARB) at Ambient Temperature, Mater. Sci. Eng. A, 2012, 543, p 249–256CrossRefGoogle Scholar
  20. 20.
    H. Chang, M. Zheng, W. Gan, C. Xu, and H.G. Brokmeier, Texture Evolution of the Mg/Al Laminated Composite by Accumulative Roll Bonding at Ambient Temperature, Rare Metal Mater. Eng., 2013, 42, p 441–446Google Scholar
  21. 21.
    D.M. Parisa and E. Beitallah, Microstructure and Mechanical Properties of Tri-Metal Al/Ti/Mg Laminated Composite Processed by Accumulative Roll Bonding, Mater. Sci. Eng. A, 2015, 628, p 135–142CrossRefGoogle Scholar
  22. 22.
    N. Tsuji, Y. Saito, S.H. Lee, and Y. Minamino, ARB (Accumulative Roll Bonding) and Other New Techniques to Produce Bulk Ultrafine Grained Materials, Adv. Eng. Mater., 2005, 5, p 338–344CrossRefGoogle Scholar
  23. 23.
    H. Jafarian, J.H. Livar, and S.H. Razavi, Microstructure Evolution and Mechanical Properties in Ultrafine Grained Al/TiC Composite Fabricated by Accumulative Roll Bonding, Compos. B, 2015, 77, p 84–92CrossRefGoogle Scholar
  24. 24.
    R. Zhang and V.L. Acoff, Processing Sheet Materials by Accumulative Roll Bonding and Reaction Annealing from Ti/Al/Nb Elemental Foils, Mater. Sci. Eng. A, 2007, 463, p 67–73CrossRefGoogle Scholar
  25. 25.
    C.Y. Liu, R. Jing, Q. Wang, B. Zhang, Y.Z. Jia, and M.Z. Ma, Fabrication of Al/Al3Mg2 Composite by Vacuum Annealing and Accumulative Roll-Bonding Process, Mater. Sci. Eng. A, 2012, 558, p 510–516CrossRefGoogle Scholar
  26. 26.
    R.J. Hebert and J.H. Perepezko, Deformation-Induced Synthesis and Structural Transformations of Metallic Multi Layers, Scr. Mater., 2004, 50, p 807–812CrossRefGoogle Scholar
  27. 27.
    K.R. Gopi, H. Shivananda Nayaka, and S. Sahu, Investigation of Microstructure and Mechanical Properties of ECAP-Processed AM Series Magnesium Alloy, J. Mater. Eng. Perform., 2016, 25(9), p P3737–P3745CrossRefGoogle Scholar
  28. 28.
    Y. Chino, K. Kimura, and M. Mabuchi, Twinning Behavior and Deformation Mechanisms of Extruded AZ31 Mg Alloy, Mater. Sci. Eng. A, 2008, 486, p 481–488CrossRefGoogle Scholar
  29. 29.
    S.O. Gashti, A. Fattah-alhosseini, Y. Mazaheri, and M.K. Keshavarz, Microstructure, Mechanical Properties and Electrochemical Behavior of AA1050 Processed by Accumulative Roll Bonding (ARB), J. Alloys Compd., 2009, 474, p 406–415CrossRefGoogle Scholar
  30. 30.
    K.D. Ralston and N. Birbilis, Effect of Grain Size on Corrosion, A Review, Corrosion, 2010, 66, p 075005–075013CrossRefGoogle Scholar
  31. 31.
    A. Zarebidaki, H. Mahmoudikohani, and M.R. Aboutalebi, Microstructure and Corrosion Behavior of Electrodeposited Nano-Crystalline Nickel Coating on AZ91 Mg Alloy, J. Alloys Compd., 2014, 615, p 825–830CrossRefGoogle Scholar
  32. 32.
    G.R. Argade, S.K. Panigrahi, and R.S. Mishra, Effects of Grain Size on the Corrosion Resistance of Wrought Magnesium Alloys Containing Neodymium, Corros. Sci., 2012, 58, p 145–151CrossRefGoogle Scholar
  33. 33.
    N. Birbilis and Y. Estrin, Corrosion of Pure Mg as a Function of Grain Size and Processing Route, Adv. Eng. Mater., 2008, 10, p 579–582CrossRefGoogle Scholar
  34. 34.
    P. Saha, M. Roy, M.K. Datta, B. Lee, and P.N. Kumta, Effects of Grain Refinement on the Bio Corrosion and In Vitro Bioactivity of Magnesium, Mater. Sci. Eng. C. Mater. Biol. Appl., 2015, 57, p 294–303CrossRefGoogle Scholar
  35. 35.
    G. Song, A. Atrens, and M. Dargusch, Influence of Microstructure on the Corrosion of Diecast AZ91D, Corros. Sci., 1998, 41, p 249–273CrossRefGoogle Scholar
  36. 36.
    A. Pardo, M.C. Merino, A.E. Coy, R. Arrabal, F. Viejo, and E. Matykina, Corrosion Behaviour of Magnesium/Aluminium Alloys in 3.5 wt.% NaCl, Corros. Sci., 2008, 50, p 823–834CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Gajanan Anne
    • 1
  • M. R. Ramesh
    • 1
  • H. Shivananda Nayaka
    • 1
  • Shashi Bhushan Arya
    • 2
  • Sandeep Sahu
    • 3
  1. 1.Department of Mechanical EngineeringNational Institute of Technology KarnatakaSurathkal, MangaloreIndia
  2. 2.Department of Metallurgical and Materials EngineeringNational Institute of Technology KarnatakaSurathkal, MangaloreIndia
  3. 3.Department of Materials Science and EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations