Journal of Materials Engineering and Performance

, Volume 26, Issue 4, pp 1817–1824 | Cite as

Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel Through Powder Forging

  • Deepak Kumar
  • Ujjwal Prakash
  • Vikram V. Dabhade
  • K. Laha
  • T. Sakthivel
Article

Abstract

Oxide dispersion strengthened (ODS) ferritic steels are candidates for cladding tubes in fast breeder nuclear reactors. In this study, an 18%Cr ODS ferritic steel was prepared through powder forging route. Elemental powders with a nominal composition of Fe-18Cr-2 W-0.2Ti (composition in wt.%) with 0 and 0.35% yttria were prepared by mechanical alloying in a Simoloyer attritor under argon atmosphere. The alloyed powders were heated in a mild steel can to 1473 K under flowing hydrogen atmosphere. The can was then hot forged. Steps of sealing, degassing and evacuation are eliminated by using powder forging. Heating ODS powder in hydrogen atmosphere ensures good bonding between alloy powders. A dense ODS alloy with an attractive combination of strength and ductility was obtained after re-forging. On testing at 973 K, a loss in ductility was observed in yttria-containing alloy. The strength and ductility increased with increase in strain rate at 973 K. Reasons for this are discussed. The ODS alloy exhibited a recrystallized microstructure which is difficult to achieve by extrusion. No prior particle boundaries were observed after forging. The forged compacts exhibited isotropic mechanical properties. It is suggested that powder forging may offer several advantages over the traditional extrusion/HIP routes for fabrication of ODS alloys.

Keywords

forging isotropy mechanical alloying mechanical properties ODS steel powder metallurgy 

Notes

Acknowledgments

This research work was supported by the Board of Research in Nuclear Sciences, Government of India, Department of Atomic Energy (DAE) (Grant No. 2010/36/68-BRNS).

References

  1. 1.
    K.L. Murty and I. Charit, Structural Materials for Gen-IV Nuclear Reactors: Challenges and Opportunities, J. Nucl. Mater., 2008, 383, p 189–195CrossRefGoogle Scholar
  2. 2.
    B. Raj, Materials Science Research for Sodium Cooled Fast Reactors, Bull. Mater. Sci., 2009, 32(3), p 271–283CrossRefGoogle Scholar
  3. 3.
    T. Jayakumar, M.D. Mathew, K. Laha, and R. Sandhya, Materials Development for Fast Reactor Applications, Nucl. Eng. Des., 2013, 265, p 1175–1180CrossRefGoogle Scholar
  4. 4.
    M.A. Sokolov, D.T. Hoelzer, R.E. Stoller, and D.A. McClintock, Fracture Toughness and Tensile Properties of Nano-Structured Ferritic Steel 12YWT, J. Nucl. Mater., 2007, 367–370, p 213–216CrossRefGoogle Scholar
  5. 5.
    J.J. Fischer, Dispersion Strengthened Ferritic Alloy for Use in Liquid-Metal Fast Breeder Reactors (LMFBRS), U.S. Patent 4,075,010, 1978Google Scholar
  6. 6.
    S. Ukai and M. Fujiwara, Perspective of ODS Alloys Application in Nuclear Environments, J. Nucl. Mater., 2002, 307–311, p 749–757CrossRefGoogle Scholar
  7. 7.
    J. Hoffmann, M. Rieth, R. Lindau, M. Klimenkov, A. Möslang, and H.R.Z. Sandim, Investigation on Different Oxides as Candidates for Nano-Sized ODS Particles in Reduced-Activation Ferritic (RAF) Steels, J. Nucl. Mater., 2013, 442, p 444–448CrossRefGoogle Scholar
  8. 8.
    R. Schäublin, A. Ramar, N. Baluc, V. de Castro, M.A. Monge, T. Leguey, N. Schmid, and C. Bonjour, Microstructural Development Under Irradiation in European ODS Ferritic/Martensitic Steels, J. Nucl. Mater., 2006, 351, p 247–260CrossRefGoogle Scholar
  9. 9.
    A. Ramar and R. Schäublin, Analysis of Hardening Limits of Oxide Dispersion Strengthened Steel, J. Nucl. Mater., 2013, 432, p 323–333CrossRefGoogle Scholar
  10. 10.
    M. Praud, F. Mompiou, J. Malaplate, D. Caillard, J. Garnier, A. Steckmeyer, and B. Fournier, Study of the Deformation Mechanisms in a Fe-14% Cr ODS Alloy, J. Mater. Sci., 2012, 428, p 90–97Google Scholar
  11. 11.
    L. Toualbi, C. Cayron, P. Olier, J. Malaplate, M. Praud, M.H. Mathon, D. Bossu, E. Rouesne, A. Montani, R. Loge, and Y. De Carlan, Assessment of a New Fabrication Route for Fe-9Cr-1 W ODS Cladding Tubes, J. Nucl. Mater., 2012, 428, p 47–53CrossRefGoogle Scholar
  12. 12.
    M. Dade, J. Malaplate, J. Garnier, F. De Geuser, N. Lochet, and A. Deschamps, Influence of Consolidation Methods on the Recrystallization Kinetics of a Fe-14Cr Based ODS Steel, J. Nucl. Mater., 2016, 472, p 143–152CrossRefGoogle Scholar
  13. 13.
    S. Ukai, T. Nishida, H. Okada, T. Okuda, M. Fujiwara, and K. Asabe, Development of Oxide Dispersion Strengthened Ferritic Steels for FBR Core Application (I), J. Nucl. Sci. Technol., 1997, 34(3), p 256–263CrossRefGoogle Scholar
  14. 14.
    Z. Oksiuta, P. Kozikowski, M. Lewandowska, M. Ohnuma, K. Suresh, and K.J. Kurzydlowski, Microstructural Changes Upon Annealing in ODS-Strengthened Ultrafine Grained Ferritic Steel, J. Mater. Sci., 2013, 48, p 4620–4625CrossRefGoogle Scholar
  15. 15.
    Z. Oksiuta, A. Ozieblo, K. Perkowski, M. Osuchowski, and M. Lewandowska, Influence of HIP Pressure on Tensile Properties of a 14Cr ODS Ferritic Steel, Fusion Eng. Des., 2014, 89, p 137–141CrossRefGoogle Scholar
  16. 16.
    Z. Oksiuta, M. Lewandowska, K. Kurzydlowski, and N. Baluc, Reduced Activation ODS Ferritic Steel Recent Development in High Speed Hot Extrusion Processing, Phys. Status Solidi A, 2010, 207(5), p 1128–1131CrossRefGoogle Scholar
  17. 17.
    Y.L. Chen, A.R. Jones, and U. Miller, Origin of Porosity in Oxide-Dispersion-Strengthened Alloys Produced by Mechanical Alloying, Metall. Mater. Trans. A, 2002, 33A, p 2713–2718CrossRefGoogle Scholar
  18. 18.
    Z. Oksiuta, E.B. Courjault, and N. Baluc, Relation Between Microstructure and Charpy Impact Properties of An Elemental and Pre-alloyed 14Cr ODS Ferritic Steel Powder After Hot Isostatic Pressing, J. Mater. Sci., 2010, 45, p 3921–3930CrossRefGoogle Scholar
  19. 19.
    P. Dubuisson, Y. de Carlan, V. Garat, and M. Blat, ODS Ferritic/Martensitic Alloys for Sodium Fast Reactor Fuel Pin Cladding, J. Nucl. Mater., 2012, 428, p 6–12CrossRefGoogle Scholar
  20. 20.
    Y. de Carlan, J.-L. Bechade, P. Dubuisson, J.-L. Seran, P. Billot, A. Bougault, T. Cozzika, S. Doriot, D. Hamon, J. Henry, M. Ratti, N. Lochet, D. Nunes, P. Olier, T. Leblond, and M.H. Mathon, CEA Developments of New Ferritic ODS Alloys for Nuclear Applications, J. Nucl. Mater., 2009, 386–388, p 430–432CrossRefGoogle Scholar
  21. 21.
    U. Prakash and V. Dabhade, A Process for Powder Forging of Metals/Alloys to Obtain Full Density Products, Indian Patent Application No. 3270/DEL/2015, 12 Oct 2015.Google Scholar
  22. 22.
    H. Sakasegawa, S. Ukai, M. Tamura, S. Ohtsuka, H. Tanigawa, H. Ogiwara, A. Kohyama, and M. Fujiwara, Creep Constitutive Equation of Dual Phase 9Cr-ODS Steel, J. Nucl. Mater., 2008, 373, p 82–89CrossRefGoogle Scholar
  23. 23.
    R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, and D.T. Hoelzer, Oxide Dispersion-Strengthened Steels: A Comparison of Some Commercial and Experimental Alloys, J. Nucl. Mater., 2005, 341, p 103–114CrossRefGoogle Scholar
  24. 24.
    U. Prakash, T. Raghu, S.V. Kamat, and A.A. Gokhale, The Effect of Mg Addition on Microstructure and Tensile and Stress Rupture Properties of a P/M Al-Fe-Ce Alloy, Scripta Mater., 1998, 39(7), p 867–872CrossRefGoogle Scholar
  25. 25.
    U. Prakash, T. Raghu, A.A. Gokhale, and S.V. Kamat, Microstructure and Mechanical Properties of RSP/M Al-Fe-V-Si and Al-Fe-Ce Alloys, J. Mater. Sci., 1999, 34, p 5061–5065CrossRefGoogle Scholar
  26. 26.
    M. Inoue, T. Kaito, and S. Ohtsuka, Research and Development of Oxide Dispersion Strengthened Ferritic Steels for Sodium Cooled Fast Breeder Reactors Fuels, Materials Issues for Generation IV Systems, V. Ghetta, D. Gorse, D. Mazière, and V. Pontikis, Ed., Springer, Berlin, 2008, p 311–325 CrossRefGoogle Scholar
  27. 27.
    A. Steckmeyer, V.H. Rodrigo, J.M. Gentzbittel, V. Rabeau, and B. Fournier, Tensile Anisotropy and Creep Properties of a Fe-14CrWTi ODS Ferritic Steel, J. Nucl. Mater., 2012, 426, p 182–188CrossRefGoogle Scholar
  28. 28.
    J.H. Lee, Development of Oxide Dispersion Strengthened Ferritic Steels With and Without Aluminum, Front. Energy, 2012, 6(1), p 29–34CrossRefGoogle Scholar
  29. 29.
    Q.X. Sun, Q.F. Fang, Y. Zhou, Y.P. Xia, T. Zhang, X.P. Wang, and C.S. Liu, Development of Oxide Dispersion Strengthened Ferritic Steel Prepared by Chemical Reduction and Mechanical Milling, J. Nucl. Mater., 2013, 439, p 103–107CrossRefGoogle Scholar
  30. 30.
    S. Li, Z. Zhou, J. Jang, M. Wang, H. Hu, H. Sun, L. Zou, G. Zhang, and L. Zhang, The Influence of Cr Content on the Mechanical Properties of ODS Ferritic Steels, J. Nucl. Mater., 2014, 455, p 194–200CrossRefGoogle Scholar
  31. 31.
    A. Chauhan, D. Litvinov, and J. Aktaa, High Temperature Tensile Properties and Fracture Characteristics of Bimodal 12Cr-ODS Steel, J. Nucl. Mater., 2016, 468, p 1–8CrossRefGoogle Scholar
  32. 32.
    A. Steckmeyer, M. Praud, B. Fournier, J. Malaplate, J. Garnier, J.L. Béchade, I. Tournié, A. Tancray, A. Bougault, and P. Bonnaillie, Tensile Properties and Deformation Mechanisms of a 14Cr ODS Ferritic Steel, J. Nucl. Mater., 2010, 405, p 95–100CrossRefGoogle Scholar
  33. 33.
    J.H. Kim, T.S. Byun, D.T. Hoelzer, C.H. Park, J.T. Yeom, and J.K. Hong, Temperature Dependence of Strengthening Mechanisms in the Nanostructured Ferritic Alloy 14YWT: Part II-Mechanistic Models and Predictions, Mater. Sci. Eng. A, 2013, 559, p 111–118CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Deepak Kumar
    • 1
  • Ujjwal Prakash
    • 1
  • Vikram V. Dabhade
    • 1
  • K. Laha
    • 2
  • T. Sakthivel
    • 2
  1. 1.Department of Metallurgical and Materials EngineeringI.I.T-RoorkeeRoorkeeIndia
  2. 2.Mechanical Metallurgy GroupIGCARKalpakkamIndia

Personalised recommendations