Journal of Materials Engineering and Performance

, Volume 26, Issue 4, pp 1701–1716 | Cite as

Electrochemical Behavior of Three 90Cu-10Ni Tubes from Different Manufacturers After Immersion in 3.5% NaCl Solution

  • Okpo O. Ekerenam
  • Aili Ma
  • Yugui Zheng
  • Wilfred Emori


Investigation on the electrochemical behavior and corrosion product films formed on three 90Cu-10Ni tubes designated as Tubes A, B and C from three different manufacturers with different service lives were carried out using electrochemical techniques, SEM, XRD and XPS after immersion in 3.5 wt.% NaCl solution. The results of polarization curve measurements showed noticeable decrease in the corrosion current densities (I corr) of the three tubes with immersion time, and the I corr of Tube C was comparatively lower than those of Tubes A and B at early immersion period. EIS measurements revealed duplex film layers on the surface of the samples with the inner film formation occurring at different times for different tubes as the film resistance R f2 revealed the formation of the inner compact layer in Tube C after 15-day immersion and in Tubes A and B after 30 days. Tube C showed better corrosion resistance which is due to early formation of the inner compact oxide film. The XPS analysis revealed Ni enrichment on the surface film of the three samples but Ni depletion as the immersion time is increased.


corrosion and wear corrosion product film EIS nonferrous metals oxidation polarization curves XPS 



The authors gratefully acknowledge financial support of National Natural Science Foundation of China (Grant No. Y7F2131111) and the National Environmental Corrosion Platform (2005DKA10400).


  1. 1.
    N. Acuña, B. Valdez, M. Schorr, and G. Hernández-Duque, Effect of Marine Biofilm on Fatigue Resistance of Austenitic & Stainless Steel, Corros. Rev., 2004, 22(2), p 101–113CrossRefGoogle Scholar
  2. 2.
    R.W. Cahn, P. Hassen, and E.J. Kramer, Materials Science and Technology, A Comprehensive Treatment, Structure and Properties of Nonferrous Alloys, VCH, New York, 1996Google Scholar
  3. 3.
    J.M. Popplewell, R.J. Hart, and J.A. Ford, The Effect of Iron on the Corrosion Characteristics of 90-10 Cupronickel in Quiescent 3.4%NaCl Solution, Corros. Sci., 1973, 13, p 295–309CrossRefGoogle Scholar
  4. 4.
    W.C. Stewart and F.L. Laque, Corrosion Resisting Characteristics of Iron Modified 90:10 Cupronickel Alloy, Corrosion, 1952, 8, p 259–277CrossRefGoogle Scholar
  5. 5.
    A.M. Beccaria and J. Crousier, Influence of Iron Addition on Corrosion Layer Built up on 70Cu-30Ni Alloy in Seawater, Br. Corros. J., 1991, 26, p 5CrossRefGoogle Scholar
  6. 6.
    S.A. Campbell, G.J.W. Radford, C.D.S. Tuck, and B.D. Barker, Corrosion and Galvanic Compatibility Studies of a High-Strength Copper-Nickel Alloy, Corrosion, 2002, 58(1), p 57–71CrossRefGoogle Scholar
  7. 7.
    S. Colin, E. Beche, R. Berjoan, H. Jolibois, and A. Chambaudet, An XPS and AES Study of the Free Corrosion of Cu-, Ni- and Zn-Based Alloys in Synthetic Sweat, Corros. Sci., 1999, 41(6), p 1051–1065CrossRefGoogle Scholar
  8. 8.
    G. Kear, B.D. Barker, K.R. Stokes, and F.C. Walsh, Electrochemistry of Non-Aged 90-10 Copper-Nickel Alloy (UNS C70610) as a Function of Fluid Flow: Part 2: Cyclic Voltammetry and Characterisation of the Corrosion Mechanism, Electrochim. Acta, 2007, 52(7), p 2343–2351CrossRefGoogle Scholar
  9. 9.
    R.C.N. Liberto, R. Magnabosco, and N. Alonso-Falleiros, Selective Corrosion of 550 °C Aged Cu10Ni-3Al-1.3Fe Alloy in NaCl Aqueous Solution, Corros. Sci., 2011, 53(5), p 1976–1982CrossRefGoogle Scholar
  10. 10.
    R.F. North and M.J. Pryor, The Influence of Corrosion Product Structure on the Corrosion Rate of Cu-Ni Alloys, Corros. Sci., 1970, 10(5), p 297–311CrossRefGoogle Scholar
  11. 11.
    P. Druska and H.H. Strehblow, Surface Analytical Examination of Passive Layers on Cu-Ni Alloys Part II. Acidic Solutions, Corros. Sci., 1996, 38(8), p 1369–1383CrossRefGoogle Scholar
  12. 12.
    W. Schleich, Typical Failures of CuNi 90/10 Seawater Tubing Systems and How to Avoid Them, European Corrosion Congress, 2004, p 1–10Google Scholar
  13. 13.
    K.M. Wilhelm Schleich, and C. Powell, 5—CuNi 90/10: How to Avoid Typical Failures of Seawater Tubing Systems and Marine Biofouling on Structures, Corrosion Behaviour and Protection of Copper and Aluminium Alloys in Seawater, D. Féron, Ed., Woodhead Publishing, 2007, p 73–94Google Scholar
  14. 14.
    S.J. Yuan, A.M.F. Choong, and S.O. Pehkonen, The Influence of the Marine Aerobic Pseudomonas Strain on the Corrosion of 70/30 Cu-Ni Alloy, Corros. Sci., 2007, 49(12), p 4352–4385CrossRefGoogle Scholar
  15. 15.
    R.J.K. Wood, S.P. Hutton, and D.J. Schiffrin, Mass Transfer Effects of Non-Cavitating Seawater on the Corrosion of Cu and 70Cu-30Ni, Corros. Sci., 1990, 30, p 1177–1201CrossRefGoogle Scholar
  16. 16.
    A.L. Ma, S.L. Jiang, Y.G. Zheng, and W. Ke, Corrosion Product Film Formed on the 90/10 Copper-Nickel Tube in Natural Seawater: Composition/Structure and Formation Mechanism, Corros. Sci., 2015, 91, p 245–261CrossRefGoogle Scholar
  17. 17.
    X.L. Zhu and T.Q. Lei, Characteristics and Formation of Corrosion Product Films of 70Cu-30Ni alloy in Seawater, Corros. Sci., 2002, 44(1), p 67–79CrossRefGoogle Scholar
  18. 18.
    A. Ma, S. Jiang, Y. Zheng, Z. Yao, W. Ke, and S. Xia, Correlation Between Microstructure and Corrosion Behavior of Two 90Cu10Ni Alloy Tubes, Acta Metall. Sin. (Engl. Lett.), 2014, 27(4), p 730–738CrossRefGoogle Scholar
  19. 19.
    W. Schleich, Application of Copper-Nickel Alloy UNS C70600 for Seawater Service, CORROSION/2005 Annual Conference and Exhibition, NACE International, Houston, 2005, p 1–14Google Scholar
  20. 20.
    M.S. Parvizi, A. Aladjem, and J.E. Castle, Behaviour of 90-10 Cupronickel in Sea Water, Int. Mater. Rev., 1988, 33(4), p 169–200CrossRefGoogle Scholar
  21. 21.
    W.A. Badawy, M.M. El-Rabiee, N.H. Helal, and H. Nady, Effect of Nickel Content on the Electrochemical Behavior of Cu-Al-Ni Alloys in Chloride Free Neutral Solutions, Electrochim. Acta, 2010, 56(2), p 913–918CrossRefGoogle Scholar
  22. 22.
    A. Barbucci, G. Farne, P. Matteazzi, R. Riccieri, and G. Cerisola, Corrosion Behaviour of Nanocrystalline Cu90Ni10 Alloy in Neutral Solution Containing Chlorides, Corros. Sci., 1998, 41(3), p 463–475CrossRefGoogle Scholar
  23. 23.
    W.A. Badawy, M. El-Rabiee, N.H. Helal, and H. Nady, The Role of Ni in the Surface Stability of Cu-Al-Ni Ternary Alloys in Sulfate-Chloride Solutions, Electrochim. Acta, 2012, 71, p 50–57CrossRefGoogle Scholar
  24. 24.
    F.M. Al-Kharafi and W.A. Badawy, Electrochemical Behaviour of Vanadium in aqueous Solutions of Different pH, Electrochim. Acta, 1997, 42(4), p 579–586CrossRefGoogle Scholar
  25. 25.
    K.M. Ismail and W.A. Badawy, Electrochemical and XPS Investigations of Cobalt in KOH Solutions, J. Appl. Electrochem., 2001, 30(11), p 1303CrossRefGoogle Scholar
  26. 26.
    K.M. Ismail, A.M. Fathi, and W.A. Badaway, The Influence of Ni Content on the Stability of Copper-Nickel Alloys in Alkaline Sulphate Solutions, J. Appl. Electrochem., 2004, 34(8), p 823–831CrossRefGoogle Scholar
  27. 27.
    I. Milošev and M. Metikoš-Huković, The Behaviour of Cu-xNi (x = 10 to 40 wt%) Alloys in Alkaline Solutions Containing Chloride Ions, Electrochim. Acta, 1997, 42, p 1537–1548CrossRefGoogle Scholar
  28. 28.
    R.G. Blundy and M.J. Pryor, The Potential Dependence of Reaction Product Composition on Copper-Nickel Alloys, Corros. Sci., 1972, 12, p 65–75CrossRefGoogle Scholar
  29. 29.
    W.S. Tail, An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists, University of Wisconsin-Madison, Racine, 1994Google Scholar
  30. 30.
    I. Thompson and D. Campbell, Interpreting Nyquist Responses from Defective Coatings on Steel Substrates, Corros. Sci., 1994, 36(1), p 187–198CrossRefGoogle Scholar
  31. 31.
    A.M. Alfantazi, T.M. Ahmed, and D. Tromans, Corrosion Behavior of Copper Alloys in Chloride Media, Mater. Des., 2009, 30(7), p 2425–2430CrossRefGoogle Scholar
  32. 32.
    K.M. Ismail, A.M. Fathi, and W.A. Badawy, Electrochemical Behavior of Copper-Nickel Alloys in Acidic Chloride Solutions, Corros. Sci., 2006, 48(8), p 1912–1925CrossRefGoogle Scholar
  33. 33.
    L. Babouri, K. Belmokre, A. Abdelouas, J.F. Bardeau, and Y. El Mendili, The Inhibitive Effect of Cerium Carbonate on the Corrosion of Brass in 3% NaCl Solution, Int. J. Electrochem. Sci, 2015, 10(9), p 7818–7839Google Scholar
  34. 34.
    K. Chandra, V. Kain, G.K. Dey, P.S. Shetty, and R. Kishan, Failure Analysis of Cupronickel Evaporator Tubes of a Chilling Plant, Eng. Fail. Anal., 2010, 17(2), p 587–593CrossRefGoogle Scholar
  35. 35.
    B. Sun, T.Y. Ye, Q. Feng, J.H. Yao, and M. Wei, Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions, Materials, 2015, 8(9), p 6029–6042CrossRefGoogle Scholar
  36. 36.
    P.K. Chauhan and H.S. Gadiyar, An XPS Study of the Corrosion of Cu-10Ni Alloy in Unpolluted and Polluted Sea-Water: the Effect of FeSO4 Addition, Corros. Sci., 1985, 25(1), p 55–68CrossRefGoogle Scholar
  37. 37.
    J. Mathiyarasu, N. Palaniswamy, and V.S. Muralidharan, Effect of Nickel Content on the Electrochemical Behaviour of Cupronickel Alloy in Neutral Chloride Solutions, Port. Electrochim. Acta, 1999, 17, p 45–56CrossRefGoogle Scholar
  38. 38.
    M. Metikos-Hukovic, R. Babic, I. Skugor, and Z. Grubac, Copper-Nickel Alloys Modified with Thin Surface Films: Corrosion Behaviour in the Presence of Chloride Ions, Corros. Sci., 2011, 53(1), p 347–352CrossRefGoogle Scholar
  39. 39.
    K.D. Efird, Potential-pH Diagrams for 90-10 and 70-30 Cu-Ni in Sea Water, Corrosion, 1975, 31(3), p 77–83CrossRefGoogle Scholar
  40. 40.
    Y.H. Kang, L.L. Luo, X. Tong, D. Starr, G. Zhou, and J.C. Yang, Duplex Oxide Formation During Transient Oxidation of Cu-5%Ni(001) Investigated by In Situ UHV-TEM and XPS, 8th International Symposium on High Temperature Corrosion and Protection of Materials (HTCPM), Les Embiez, 2012Google Scholar
  41. 41.
    G. Kear, B.D. Barker, K. Stokes, and F.C. Walsh, Electrochemica Corrosion Behaviour of 90-10Cu-Ni Alloy in Chloride-Based Electrolytes, J. Appl. Electrochem., 2004, 34(7), p 659–669CrossRefGoogle Scholar
  42. 42.
    C. Deslouis, B. Tribollet, G. Mengoli, and M.M. Musiani, Electrochemical Behaviour of Copper in Neutral Aerated Chloride Solution. II. Impedance Investigation, J. Appl. Electrochem., 1988, 18(3), p 384–393CrossRefGoogle Scholar
  43. 43.
    R. Babic, M. Metikos-Hukovic, and M. LoncÏar, Impedance and Photoelectrochemical Study of Surface Layers on Cu and Cu-10Ni in Acetate Solution Containing Benzotriazole, Electrochim. Acta, 1999, 44(14), p 2413–2421CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Okpo O. Ekerenam
    • 1
  • Aili Ma
    • 1
  • Yugui Zheng
    • 1
  • Wilfred Emori
    • 1
  1. 1.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal ResearchChinese Academy of SciencesShenyangPeople’s Republic of China

Personalised recommendations