Journal of Materials Engineering and Performance

, Volume 26, Issue 4, pp 1513–1530 | Cite as

Microstructures, Forming Limit and Failure Analyses of Inconel 718 Sheets for Fabrication of Aerospace Components

  • K. Sajun Prasad
  • Sushanta Kumar Panda
  • Sujoy Kumar Kar
  • Mainak Sen
  • S. V. S. Naryana Murty
  • Sharad Chandra Sharma
Article

Abstract

Recently, aerospace industries have shown increasing interest in forming limits of Inconel 718 sheet metals, which can be utilised in designing tools and selection of process parameters for successful fabrication of components. In the present work, stress-strain response with failure strains was evaluated by uniaxial tensile tests in different orientations, and two-stage work-hardening behavior was observed. In spite of highly preferred texture, tensile properties showed minor variations in different orientations due to the random distribution of nanoprecipitates. The forming limit strains were evaluated by deforming specimens in seven different strain paths using limiting dome height (LDH) test facility. Mostly, the specimens failed without prior indication of localized necking. Thus, fracture forming limit diagram (FFLD) was evaluated, and bending correction was imposed due to the use of sub-size hemispherical punch. The failure strains of FFLD were converted into major-minor stress space (σ-FFLD) and effective plastic strain-stress triaxiality space (ηEPS-FFLD) as failure criteria to avoid the strain path dependence. Moreover, FE model was developed, and the LDH, strain distribution and failure location were predicted successfully using above-mentioned failure criteria with two stages of work hardening. Fractographs were correlated with the fracture behavior and formability of sheet metal.

Keywords

electron microscopy finite element modeling fractography fracture forming limit diagram Inconel 718 limiting dome height 

Notes

Acknowledgments

Authors wish to express their sincere gratitude to Indian Space Research Organisation (ISRO), Government of India, through Kalpana Chawla Space Technology Cell, IIT Kharagpur (Sanction Number-IIT/KCSTC/CHAIR./NEW.APPR./13-14/64), for providing the financial support.

References

  1. 1.
    H. Yuan and W.C. Liu, Effect of the δ Phase on the Hot Deformation Behavior of Inconel 718, Mater. Sci. Eng. A, 2005, 408, p 281–289CrossRefGoogle Scholar
  2. 2.
    H.J. Song, Microstructural Evolution and Deformation Mechanisms in Nickel-Base Superalloys. PhD Thesis, University of Cincinnati, USA, 2010Google Scholar
  3. 3.
    K.S. Prasad, T. Kamal, S.K. Panda, S. Kar, S.V.S. Narayana Murty, and S.C. Sharma, Finite Element Validation of Forming Limit Diagram of IN-718 Sheet Metal, Mater. Today Proc., 2015, 2(4), p 2037–2045CrossRefGoogle Scholar
  4. 4.
    S.C. Krishna, S.K. Singh, S.V.S.N. Murty, G.V. Narayana, A.K. Jha, B. Pant, and K.M. George, Closed Die Hammer Forging of Inconel 718, J. Metall., 2014, 2014, p 1–7CrossRefGoogle Scholar
  5. 5.
    L.H. Thaller and A.H. Zimmerman, Overview of the Design, Development, and Application of Nickel-Hydrogen Batteries, NASA Tech. Rep., 2003, (NASA TP—2003-211905)Google Scholar
  6. 6.
    P. Roamer, C.J. Van Tyne, D.K. Matlock, A.M. Meier, H. Ruble, and F. Suarez, Room Temperature Formability of Alloys 625LCF, 718 and 718SPF, Advanced Steel Processing and Products Research Center Colorado School of Mines Golden, CO 80401, TMS, 1997, p 315–329Google Scholar
  7. 7.
    K. Hariharan, N.T. Nguyen, N. Chakraborti, M.G. Lee, and F. Barlat, Multi-objective Genetic Algorithm to Optimize Variable Drawbead Geometry for Tailor Welded Blanks Made of Dissimilar Steels, Steel Res. Int., 2014, 85, p 1597–1607CrossRefGoogle Scholar
  8. 8.
    S.M. Hussaini, G. Krishna, A.K. Gupta, and S.K. Singh, Development of Experimental and Theoretical Forming Limit Diagrams for Warm Forming of Austenitic Stainless Steel 316, J. Manuf. Process., 2015, 18, p 151–158CrossRefGoogle Scholar
  9. 9.
    K. Bandyopadhyay, S.K. Panda, and P. Saha, Optimization of Fiber Laser Welding of DP980 Steels Using RSM to Improve Weld Properties for Formability, J. Mater. Eng. Perform., 2016, 25, p 2462–2477CrossRefGoogle Scholar
  10. 10.
    S.K. Singh, K. Mahesh, A. Kumar, and M. Swathi, Understanding Formability of Extra-Deep Drawing Steel at Elevated Temperature Using Finite Element Simulation, Mater. Des., 2010, 31, p 4478–4484CrossRefGoogle Scholar
  11. 11.
    S.S. Panicker, H.G. Singh, S.K. Panda, and R. Dashwood, Characterization of Tensile Properties, Limiting Strains, and Deep Drawing Behavior of AA5754-H22 Sheet at Elevated Temperature, J. Mater. Eng. Perform., 2015, 24, p 4267–4282CrossRefGoogle Scholar
  12. 12.
    K. Bandyopadhyay, S.K. Panda, and P. Saha, Investigations Into the Influence of Weld Zone on Formability of Fiber Laser-Welded Advanced High Strength Steel, J. Mater. Eng. Perform., 2014, 23, p 1465–1479CrossRefGoogle Scholar
  13. 13.
    K. Hariharan, G. Balachandran, and M.S. Prasad, Application of Cost-Effective Stainless Steel for Automotive Components, Mater. Manuf. Process., 2009, 24, p 1442–1452CrossRefGoogle Scholar
  14. 14.
    R.K. Kesharwani, S.K. Panda, and S.K. Pal, Experimental Investigations on Formability of Aluminum Tailor Friction Stir Welded Blanks in Deep Drawing Process, J. Mater. Eng. Perform., 2015, 24, p 1038–1049CrossRefGoogle Scholar
  15. 15.
    S.P. Keeler, Determination of Forming Limits in Automotive Stampings, SAE Tech. Pap., 1965, 42, p 683–691Google Scholar
  16. 16.
    G.M. Goodwin, Application of Strain Analysis to Sheet Metal Forming Problems in the Press Shop, SAE Tech. Pap., 1968, 60, p 764–774Google Scholar
  17. 17.
    S.S. Hecker, Simple Technique for Determining Forming Limit Curves, Sheet Met. Ind., 1975, 52, p 671–676Google Scholar
  18. 18.
    L.X. Zhou and T.N. Baker, Effects of Strain Rate and Temperature on Deformation Behaviour of IN 718 During High Temperature Deformation, Mater. Sci. Eng. A, 1994, 177, p 1–9CrossRefGoogle Scholar
  19. 19.
    X.-M. Chen, Y.C. Lin, D.-X. Wen, J.-L. Zhang, and M. He, Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy During Hot Deformation, Mater. Des., 2014, 57, p 568–577CrossRefGoogle Scholar
  20. 20.
    F.-L. Sui, L.-X. Xu, L.-Q. Chen, and X.-H. Liu, Processing Map for Hot Working of Inconel 718 Alloy, J. Mater. Process. Technol., 2011, 211, p 433–440CrossRefGoogle Scholar
  21. 21.
    H.N. Han and K.H. Kim, A Ductile Fracture Criterion in Sheet Metal Forming Process, J. Mater. Process. Technol., 2003, 142, p 231–238CrossRefGoogle Scholar
  22. 22.
    M.B. Silva, M. Skjoedt, A.G. Atkins, N. Bay, and P.A.F. Martins, Single-Point Incremental Forming and Formability–Failure Diagrams, J. Strain Anal. Eng. Des., 2008, 43, p 15–35CrossRefGoogle Scholar
  23. 23.
    K. Isik, M.B. Silva, A.E. Tekkaya, and P.A.F. Martins, Formability Limits by Fracture in Sheet Metal Forming, J. Mater. Process. Technol., 2014, 214, p 1557–1565CrossRefGoogle Scholar
  24. 24.
    A.S. Korhonen and T. Manninen, Forming and Fracture Limits of Austenitic Stainless Steel Sheets, Mater. Sci. Eng. A, 2008, 488, p 157–166CrossRefGoogle Scholar
  25. 25.
    M. Gorji, B. Berisha, P. Hora, and F. Barlat, Modeling of Localization and Fracture Phenomena in Strain and Stress Space for Sheet Metal Forming. Int. J. Mater. Form., 2015, 9, p 1–12Google Scholar
  26. 26.
    J. Jeswiet, F. Micari, G. Hirt, A. Bramley, J. Duflou, and J. Allwood, Asymmetric Single Point Incremental Forming of Sheet Metal, CIRP Ann. Technol., 2005, 54, p 88–114CrossRefGoogle Scholar
  27. 27.
    J.D. Embury and J.L. Duncan, Formability Maps, Annu. Rev. Mater. Sci., 1981, 11, p 505–521CrossRefGoogle Scholar
  28. 28.
    H. Takuda, K. Mori, N. Takakura, and K. Yamaguchi, Finite Element Analysis of Limit Strain in Biaxial Stretching of Sheet Metals Allowing Ductile Fracture, Int. J. Mech. Sci., 2000, 42, p 785–798CrossRefGoogle Scholar
  29. 29.
    M. Jain, J. Allin, and D.J. Lloyd, Fracture Limit Prediction Using Ductile Fracture Criteria for Forming of an Automotive Aluminum Sheet, Int. J. Mech. Sci., 1999, 41, p 1273–1288CrossRefGoogle Scholar
  30. 30.
    S. Basak, S.K. Panda, and Y.N. Zhou, Formability Assessment of Prestrained Automotive Grade Steel Sheets Using Stress Based and Polar Effective Plastic Strain-Forming Limit Diagram, J. Eng. Mater. Tech., 2015, 137, p 1–12CrossRefGoogle Scholar
  31. 31.
    R. Arrieux, C. Bedrin, and M. Boivin, Determination of an Intrinsic Forming Limit Stress Diagram for Isotropic Metal Sheets. In Proceedings of the 12th Biennial Congress of the IDDRG, 1982, p 61–71.Google Scholar
  32. 32.
    T.B. Stoughton, General Forming Limit Criterion for Sheet Metal Forming, Int. J. Mech. Sci., 2000, 42, p 1–17CrossRefGoogle Scholar
  33. 33.
    T.B. Stoughton and X. Zhu, Review of Theoretical Models of the Strain-Based FLD and Their Relevance to the Stress-Based FLD, Int. J. Plast., 2004, 20, p 1463–1486CrossRefGoogle Scholar
  34. 34.
    Y. Bai and T. Wierzbicki, A New Model of Metal Plasticity and Fracture with Pressure and Lode Dependence, Int. J. Plast., 2008, 24, p 1071–1096CrossRefGoogle Scholar
  35. 35.
    H. Hooputra, G. Metzmacher, and H. Werner, Fracture Criteria for Crashworthiness Simulation of Wrought Aluminum Alloy Components. In Proceedings of 11th Annual European Conference EuroPam, Heidelberg, Germany, 2001, p 1–18.Google Scholar
  36. 36.
    A.H. Clausen, T. Børvik, O.S. Hopperstad, and A. Benallal, Flow and Fracture Characteristics of Aluminium Alloy AA5083–H116 as Function of Strain Rate, Temperature and Triaxiality, Mater. Sci. Eng. A, 2004, 364, p 260–272CrossRefGoogle Scholar
  37. 37.
    AMS 5596 Specification Nickel Alloy, Corrosion and Heat Resistant, Sheet, Strip, Foil, and Plate 52.5Ni 19Cr 3.0Mo 5.1Cb 0.90Ti 0.50Al 18Fe Consumable Electrode or Vacuum Induction Melted, 1775 °F (968 °C) Solution Heat Treated, AMS, SAE International, 2012. http://standards.sae.org/ams5596k/.
  38. 38.
    M. Xie, Eutectic γ (Ni)/γ(Ni3Al)-δ (Ni3Nb) Polycrystalline Nickel-Base Superalloys: Chemistry, Processing, Microstructure and Properties, PhD Thesis, Illinois Institute of Technology, USA, 2012.Google Scholar
  39. 39.
    Standard, ASTM, E8/E8M Standard Test Methods for Tension Testing of Metallic Materials, ASTM. International, West Conshohocken (PA), 2011Google Scholar
  40. 40.
    J.H. Hollomon, Tensile Deformation, AIME Trans., 1945, 12, p 1–22Google Scholar
  41. 41.
    H.W. Swift, Plastic Instability Under Plane Stress, J. Mech. Phys. Solids, 1952, 1, p 1–18CrossRefGoogle Scholar
  42. 42.
    W.A. Backofen, I.R. Turner, and D.H. Avery, Superplasticity in an Al–Zn Alloy, Trans. ASM, 1964, 57, p 980–990Google Scholar
  43. 43.
    P.L. Charpentier, Influence of Punch Curvature on the Stretching Limits of Sheet Steel, Metall. Mater. Trans. A, 1975, 6, p 1665–1669CrossRefGoogle Scholar
  44. 44.
    O.M. Badr, B. Rolfe, P. Hodgson, and M. Weiss, Forming of High Strength Titanium Sheet at Room Temperature, Mater. Des., 2014, 66, p 618–626CrossRefGoogle Scholar
  45. 45.
    J. He, Z.C. Xia, X. Zhu, D. Zeng, and S. Li, Sheet Metal Forming Limits Under Stretch-Bending with Anisotropic Hardening, Int. J. Mech. Sci., 2013, 75, p 244–256CrossRefGoogle Scholar
  46. 46.
    K.S. Prasad, S.K. Panda, S.K. Kar, S.V.S.N. Murty, and S.C. Sharma, Effect of Bending Strain in Forming Limit Strain and Stress of IN-718 Sheet Metal, Mater. Sci. Forum, 2015, 830, p 238–241CrossRefGoogle Scholar
  47. 47.
    M.J. Donachie Jr., and O.H. Kriege, Phase Extraction and Analysis in Superalloys-Summary of Investigations by ASTM Committee E-4 Task Group 1, J. Mater., 1972, 7, p 269–278Google Scholar
  48. 48.
    E.O. Ezugwu, Z.M. Wang, and A.R. Machado, The Machinability of Nickel-Based Alloys: A Review, J. Mater. Process. Technol., 1999, 86, p 1–16CrossRefGoogle Scholar
  49. 49.
    L. Garimella, P.K. Liaw, and D.L. Klarstrom, Fatigue Behavior in Nickel Based Superalloys: A Literature Review, Jom, 1997, 49, p 67–71CrossRefGoogle Scholar
  50. 50.
    A. Oradei-Basile and J.F. Radavich, A Current TTT Diagram for Wrought Alloy 718, Superalloys 718, 625 Var. Deriv., tms.org, 1991, p 325–335.Google Scholar
  51. 51.
    W.C. Liu, F.R. Xiao, M. Yao, Z.L. Chen, Z.Q. Jiang, and S.G. Wang, The Influence of Cold Rolling on the Precipitation of Delta Phase in Inconel 718 Alloy, Scr. Mater., 1997, 37, p 53–57CrossRefGoogle Scholar
  52. 52.
    D.R. Kumar and K. Swaminathan, Formability of Two Aluminium Alloys, Mater. Sci. Technol., 1999, 15, p 1241–1252Google Scholar
  53. 53.
    S. Iyer, Viscoplastic Model Development to Account for Strength Differential: Application To Aged Inconel 718 at Elevated Temperature, PhD Thesis, Penn State University, USA, 2001.Google Scholar
  54. 54.
    W.F. Hosford and J.L. Duncan, Sheet Metal Forming: A Review, Jom, 1999, 51, p 39CrossRefGoogle Scholar
  55. 55.
    M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Deformation Behavior of Gamma Double Prime Strengthened Inconel 718, Acta Met., 1988, 36, p 847–864CrossRefGoogle Scholar
  56. 56.
    M. Sundararaman, R. Kishore, and P. Mukhopadhyay, Strain Hardening in Underaged Inconel 718, Metall. Mater. Trans. A, 1994, 25, p 653–656CrossRefGoogle Scholar
  57. 57.
    A.G. Atkins, Fracture in Forming, J. Mater. Process. Technol., 1996, 56, p 609–618CrossRefGoogle Scholar
  58. 58.
    G. Maresca, P.P. Milella, and G. Pino, A Critical Review of Triaxiality Based Failure Criteria, Con. IGF XIII Cassino, 1997, 2008.Google Scholar
  59. 59.
    R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. R. Soc. London A: Math. Phys. Eng. Sci., 1948, 193, p 281–297CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • K. Sajun Prasad
    • 1
  • Sushanta Kumar Panda
    • 1
  • Sujoy Kumar Kar
    • 2
  • Mainak Sen
    • 2
  • S. V. S. Naryana Murty
    • 3
  • Sharad Chandra Sharma
    • 3
  1. 1.Department of Mechanical EngineeringI.I.T. KharagpurKharagpurIndia
  2. 2.Department of Metallurgical and Materials EngineeringI.I.T. KharagpurKharagpurIndia
  3. 3.VSSCIndian Space Research OrganisationThiruvananthapuramIndia

Personalised recommendations