Skip to main content
Log in

Microstructures, Forming Limit and Failure Analyses of Inconel 718 Sheets for Fabrication of Aerospace Components

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Recently, aerospace industries have shown increasing interest in forming limits of Inconel 718 sheet metals, which can be utilised in designing tools and selection of process parameters for successful fabrication of components. In the present work, stress-strain response with failure strains was evaluated by uniaxial tensile tests in different orientations, and two-stage work-hardening behavior was observed. In spite of highly preferred texture, tensile properties showed minor variations in different orientations due to the random distribution of nanoprecipitates. The forming limit strains were evaluated by deforming specimens in seven different strain paths using limiting dome height (LDH) test facility. Mostly, the specimens failed without prior indication of localized necking. Thus, fracture forming limit diagram (FFLD) was evaluated, and bending correction was imposed due to the use of sub-size hemispherical punch. The failure strains of FFLD were converted into major-minor stress space (σ-FFLD) and effective plastic strain-stress triaxiality space (ηEPS-FFLD) as failure criteria to avoid the strain path dependence. Moreover, FE model was developed, and the LDH, strain distribution and failure location were predicted successfully using above-mentioned failure criteria with two stages of work hardening. Fractographs were correlated with the fracture behavior and formability of sheet metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. H. Yuan and W.C. Liu, Effect of the δ Phase on the Hot Deformation Behavior of Inconel 718, Mater. Sci. Eng. A, 2005, 408, p 281–289

    Article  Google Scholar 

  2. H.J. Song, Microstructural Evolution and Deformation Mechanisms in Nickel-Base Superalloys. PhD Thesis, University of Cincinnati, USA, 2010

  3. K.S. Prasad, T. Kamal, S.K. Panda, S. Kar, S.V.S. Narayana Murty, and S.C. Sharma, Finite Element Validation of Forming Limit Diagram of IN-718 Sheet Metal, Mater. Today Proc., 2015, 2(4), p 2037–2045

    Article  Google Scholar 

  4. S.C. Krishna, S.K. Singh, S.V.S.N. Murty, G.V. Narayana, A.K. Jha, B. Pant, and K.M. George, Closed Die Hammer Forging of Inconel 718, J. Metall., 2014, 2014, p 1–7

    Article  Google Scholar 

  5. L.H. Thaller and A.H. Zimmerman, Overview of the Design, Development, and Application of Nickel-Hydrogen Batteries, NASA Tech. Rep., 2003, (NASA TP—2003-211905)

  6. P. Roamer, C.J. Van Tyne, D.K. Matlock, A.M. Meier, H. Ruble, and F. Suarez, Room Temperature Formability of Alloys 625LCF, 718 and 718SPF, Advanced Steel Processing and Products Research Center Colorado School of Mines Golden, CO 80401, TMS, 1997, p 315–329

  7. K. Hariharan, N.T. Nguyen, N. Chakraborti, M.G. Lee, and F. Barlat, Multi-objective Genetic Algorithm to Optimize Variable Drawbead Geometry for Tailor Welded Blanks Made of Dissimilar Steels, Steel Res. Int., 2014, 85, p 1597–1607

    Article  Google Scholar 

  8. S.M. Hussaini, G. Krishna, A.K. Gupta, and S.K. Singh, Development of Experimental and Theoretical Forming Limit Diagrams for Warm Forming of Austenitic Stainless Steel 316, J. Manuf. Process., 2015, 18, p 151–158

    Article  Google Scholar 

  9. K. Bandyopadhyay, S.K. Panda, and P. Saha, Optimization of Fiber Laser Welding of DP980 Steels Using RSM to Improve Weld Properties for Formability, J. Mater. Eng. Perform., 2016, 25, p 2462–2477

    Article  Google Scholar 

  10. S.K. Singh, K. Mahesh, A. Kumar, and M. Swathi, Understanding Formability of Extra-Deep Drawing Steel at Elevated Temperature Using Finite Element Simulation, Mater. Des., 2010, 31, p 4478–4484

    Article  Google Scholar 

  11. S.S. Panicker, H.G. Singh, S.K. Panda, and R. Dashwood, Characterization of Tensile Properties, Limiting Strains, and Deep Drawing Behavior of AA5754-H22 Sheet at Elevated Temperature, J. Mater. Eng. Perform., 2015, 24, p 4267–4282

    Article  Google Scholar 

  12. K. Bandyopadhyay, S.K. Panda, and P. Saha, Investigations Into the Influence of Weld Zone on Formability of Fiber Laser-Welded Advanced High Strength Steel, J. Mater. Eng. Perform., 2014, 23, p 1465–1479

    Article  Google Scholar 

  13. K. Hariharan, G. Balachandran, and M.S. Prasad, Application of Cost-Effective Stainless Steel for Automotive Components, Mater. Manuf. Process., 2009, 24, p 1442–1452

    Article  Google Scholar 

  14. R.K. Kesharwani, S.K. Panda, and S.K. Pal, Experimental Investigations on Formability of Aluminum Tailor Friction Stir Welded Blanks in Deep Drawing Process, J. Mater. Eng. Perform., 2015, 24, p 1038–1049

    Article  Google Scholar 

  15. S.P. Keeler, Determination of Forming Limits in Automotive Stampings, SAE Tech. Pap., 1965, 42, p 683–691

    Google Scholar 

  16. G.M. Goodwin, Application of Strain Analysis to Sheet Metal Forming Problems in the Press Shop, SAE Tech. Pap., 1968, 60, p 764–774

    Google Scholar 

  17. S.S. Hecker, Simple Technique for Determining Forming Limit Curves, Sheet Met. Ind., 1975, 52, p 671–676

    Google Scholar 

  18. L.X. Zhou and T.N. Baker, Effects of Strain Rate and Temperature on Deformation Behaviour of IN 718 During High Temperature Deformation, Mater. Sci. Eng. A, 1994, 177, p 1–9

    Article  Google Scholar 

  19. X.-M. Chen, Y.C. Lin, D.-X. Wen, J.-L. Zhang, and M. He, Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy During Hot Deformation, Mater. Des., 2014, 57, p 568–577

    Article  Google Scholar 

  20. F.-L. Sui, L.-X. Xu, L.-Q. Chen, and X.-H. Liu, Processing Map for Hot Working of Inconel 718 Alloy, J. Mater. Process. Technol., 2011, 211, p 433–440

    Article  Google Scholar 

  21. H.N. Han and K.H. Kim, A Ductile Fracture Criterion in Sheet Metal Forming Process, J. Mater. Process. Technol., 2003, 142, p 231–238

    Article  Google Scholar 

  22. M.B. Silva, M. Skjoedt, A.G. Atkins, N. Bay, and P.A.F. Martins, Single-Point Incremental Forming and Formability–Failure Diagrams, J. Strain Anal. Eng. Des., 2008, 43, p 15–35

    Article  Google Scholar 

  23. K. Isik, M.B. Silva, A.E. Tekkaya, and P.A.F. Martins, Formability Limits by Fracture in Sheet Metal Forming, J. Mater. Process. Technol., 2014, 214, p 1557–1565

    Article  Google Scholar 

  24. A.S. Korhonen and T. Manninen, Forming and Fracture Limits of Austenitic Stainless Steel Sheets, Mater. Sci. Eng. A, 2008, 488, p 157–166

    Article  Google Scholar 

  25. M. Gorji, B. Berisha, P. Hora, and F. Barlat, Modeling of Localization and Fracture Phenomena in Strain and Stress Space for Sheet Metal Forming. Int. J. Mater. Form., 2015, 9, p 1–12

  26. J. Jeswiet, F. Micari, G. Hirt, A. Bramley, J. Duflou, and J. Allwood, Asymmetric Single Point Incremental Forming of Sheet Metal, CIRP Ann. Technol., 2005, 54, p 88–114

    Article  Google Scholar 

  27. J.D. Embury and J.L. Duncan, Formability Maps, Annu. Rev. Mater. Sci., 1981, 11, p 505–521

    Article  Google Scholar 

  28. H. Takuda, K. Mori, N. Takakura, and K. Yamaguchi, Finite Element Analysis of Limit Strain in Biaxial Stretching of Sheet Metals Allowing Ductile Fracture, Int. J. Mech. Sci., 2000, 42, p 785–798

    Article  Google Scholar 

  29. M. Jain, J. Allin, and D.J. Lloyd, Fracture Limit Prediction Using Ductile Fracture Criteria for Forming of an Automotive Aluminum Sheet, Int. J. Mech. Sci., 1999, 41, p 1273–1288

    Article  Google Scholar 

  30. S. Basak, S.K. Panda, and Y.N. Zhou, Formability Assessment of Prestrained Automotive Grade Steel Sheets Using Stress Based and Polar Effective Plastic Strain-Forming Limit Diagram, J. Eng. Mater. Tech., 2015, 137, p 1–12

    Article  Google Scholar 

  31. R. Arrieux, C. Bedrin, and M. Boivin, Determination of an Intrinsic Forming Limit Stress Diagram for Isotropic Metal Sheets. In Proceedings of the 12th Biennial Congress of the IDDRG, 1982, p 61–71.

  32. T.B. Stoughton, General Forming Limit Criterion for Sheet Metal Forming, Int. J. Mech. Sci., 2000, 42, p 1–17

    Article  Google Scholar 

  33. T.B. Stoughton and X. Zhu, Review of Theoretical Models of the Strain-Based FLD and Their Relevance to the Stress-Based FLD, Int. J. Plast., 2004, 20, p 1463–1486

    Article  Google Scholar 

  34. Y. Bai and T. Wierzbicki, A New Model of Metal Plasticity and Fracture with Pressure and Lode Dependence, Int. J. Plast., 2008, 24, p 1071–1096

    Article  Google Scholar 

  35. H. Hooputra, G. Metzmacher, and H. Werner, Fracture Criteria for Crashworthiness Simulation of Wrought Aluminum Alloy Components. In Proceedings of 11th Annual European Conference EuroPam, Heidelberg, Germany, 2001, p 1–18.

  36. A.H. Clausen, T. Børvik, O.S. Hopperstad, and A. Benallal, Flow and Fracture Characteristics of Aluminium Alloy AA5083–H116 as Function of Strain Rate, Temperature and Triaxiality, Mater. Sci. Eng. A, 2004, 364, p 260–272

    Article  Google Scholar 

  37. AMS 5596 Specification Nickel Alloy, Corrosion and Heat Resistant, Sheet, Strip, Foil, and Plate 52.5Ni 19Cr 3.0Mo 5.1Cb 0.90Ti 0.50Al 18Fe Consumable Electrode or Vacuum Induction Melted, 1775 °F (968 °C) Solution Heat Treated, AMS, SAE International, 2012. http://standards.sae.org/ams5596k/.

  38. M. Xie, Eutectic γ (Ni)/γ(Ni3Al)-δ (Ni3Nb) Polycrystalline Nickel-Base Superalloys: Chemistry, Processing, Microstructure and Properties, PhD Thesis, Illinois Institute of Technology, USA, 2012.

  39. Standard, ASTM, E8/E8M Standard Test Methods for Tension Testing of Metallic Materials, ASTM. International, West Conshohocken (PA), 2011

    Google Scholar 

  40. J.H. Hollomon, Tensile Deformation, AIME Trans., 1945, 12, p 1–22

    Google Scholar 

  41. H.W. Swift, Plastic Instability Under Plane Stress, J. Mech. Phys. Solids, 1952, 1, p 1–18

    Article  Google Scholar 

  42. W.A. Backofen, I.R. Turner, and D.H. Avery, Superplasticity in an Al–Zn Alloy, Trans. ASM, 1964, 57, p 980–990

    Google Scholar 

  43. P.L. Charpentier, Influence of Punch Curvature on the Stretching Limits of Sheet Steel, Metall. Mater. Trans. A, 1975, 6, p 1665–1669

    Article  Google Scholar 

  44. O.M. Badr, B. Rolfe, P. Hodgson, and M. Weiss, Forming of High Strength Titanium Sheet at Room Temperature, Mater. Des., 2014, 66, p 618–626

    Article  Google Scholar 

  45. J. He, Z.C. Xia, X. Zhu, D. Zeng, and S. Li, Sheet Metal Forming Limits Under Stretch-Bending with Anisotropic Hardening, Int. J. Mech. Sci., 2013, 75, p 244–256

    Article  Google Scholar 

  46. K.S. Prasad, S.K. Panda, S.K. Kar, S.V.S.N. Murty, and S.C. Sharma, Effect of Bending Strain in Forming Limit Strain and Stress of IN-718 Sheet Metal, Mater. Sci. Forum, 2015, 830, p 238–241

    Article  Google Scholar 

  47. M.J. Donachie Jr., and O.H. Kriege, Phase Extraction and Analysis in Superalloys-Summary of Investigations by ASTM Committee E-4 Task Group 1, J. Mater., 1972, 7, p 269–278

    Google Scholar 

  48. E.O. Ezugwu, Z.M. Wang, and A.R. Machado, The Machinability of Nickel-Based Alloys: A Review, J. Mater. Process. Technol., 1999, 86, p 1–16

    Article  Google Scholar 

  49. L. Garimella, P.K. Liaw, and D.L. Klarstrom, Fatigue Behavior in Nickel Based Superalloys: A Literature Review, Jom, 1997, 49, p 67–71

    Article  Google Scholar 

  50. A. Oradei-Basile and J.F. Radavich, A Current TTT Diagram for Wrought Alloy 718, Superalloys 718, 625 Var. Deriv., tms.org, 1991, p 325–335.

  51. W.C. Liu, F.R. Xiao, M. Yao, Z.L. Chen, Z.Q. Jiang, and S.G. Wang, The Influence of Cold Rolling on the Precipitation of Delta Phase in Inconel 718 Alloy, Scr. Mater., 1997, 37, p 53–57

    Article  Google Scholar 

  52. D.R. Kumar and K. Swaminathan, Formability of Two Aluminium Alloys, Mater. Sci. Technol., 1999, 15, p 1241–1252

    Google Scholar 

  53. S. Iyer, Viscoplastic Model Development to Account for Strength Differential: Application To Aged Inconel 718 at Elevated Temperature, PhD Thesis, Penn State University, USA, 2001.

  54. W.F. Hosford and J.L. Duncan, Sheet Metal Forming: A Review, Jom, 1999, 51, p 39

    Article  Google Scholar 

  55. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Deformation Behavior of Gamma Double Prime Strengthened Inconel 718, Acta Met., 1988, 36, p 847–864

    Article  Google Scholar 

  56. M. Sundararaman, R. Kishore, and P. Mukhopadhyay, Strain Hardening in Underaged Inconel 718, Metall. Mater. Trans. A, 1994, 25, p 653–656

    Article  Google Scholar 

  57. A.G. Atkins, Fracture in Forming, J. Mater. Process. Technol., 1996, 56, p 609–618

    Article  Google Scholar 

  58. G. Maresca, P.P. Milella, and G. Pino, A Critical Review of Triaxiality Based Failure Criteria, Con. IGF XIII Cassino, 1997, 2008.

  59. R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. R. Soc. London A: Math. Phys. Eng. Sci., 1948, 193, p 281–297

    Article  Google Scholar 

Download references

Acknowledgments

Authors wish to express their sincere gratitude to Indian Space Research Organisation (ISRO), Government of India, through Kalpana Chawla Space Technology Cell, IIT Kharagpur (Sanction Number-IIT/KCSTC/CHAIR./NEW.APPR./13-14/64), for providing the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushanta Kumar Panda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajun Prasad, K., Panda, S.K., Kar, S.K. et al. Microstructures, Forming Limit and Failure Analyses of Inconel 718 Sheets for Fabrication of Aerospace Components. J. of Materi Eng and Perform 26, 1513–1530 (2017). https://doi.org/10.1007/s11665-017-2547-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2547-4

Keywords

Navigation