Skip to main content
Log in

Service Lifetime Estimation of EPDM Rubber Based on Accelerated Aging Tests

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Service lifetime of ethylene propylene diene monomer (EPDM) rubber at room temperature (25 °C) was estimated based on accelerated aging tests. The study followed sealing stress loss on compressed cylinder samples by compression stress relaxation methods. The results showed that the cylinder samples of EPDM can quickly reach the physical relaxation equilibrium by using the over-compression method. The non-Arrhenius behavior occurred at the lowest aging temperature. A significant linear relationship was observed between compression set values and normalized stress decay results, and the relationship was not related to the ambient temperature of aging. It was estimated that the sealing stress loss in view of practical application would occur after around 86.8 years at 25 °C. The estimations at 25 °C based on the non-Arrhenius behavior were in agreement with compression set data from storage aging tests in natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N. Tomohiro, H. Toshio, Y. Yukihiro, K. Tetsuya, and T. Sekiya, Thermal Degradation of Chlorosulfonated Polyethylene Rubber and Ethylene Propylene Diene Terpolymer, Mater. Des., 2012, 42, p 147–155

    Article  Google Scholar 

  2. G.J. Lake, Fatigue and Fracture of Elastomers, Rubber Chem. Technol., 1997, 68, p 435–460

    Article  Google Scholar 

  3. K.T. Gillen, M. Celina, R. Bernstein, and M. Shedd, Lifetime Predictions of EPR Materials Using the Wear-Out Approach, Polym. Degrad. Stab., 2006, 91, p 3197–3207

    Article  Google Scholar 

  4. S.W. Chang and S.P. Hyun, Useful Lifetime Prediction of Rubber Component, Eng. Fail. Anal., 2011, 18, p 1645–1651

    Article  Google Scholar 

  5. K.T. Gillen, R. Bernstein, R.L. Clough, and M. Celina, Lifetime Predictions for Semicrystalline Materials: I. Mechanical Properties and Oxygen Consumption Measurements on EPR Materials, Polym. Degrad. Stab., 2006, 91, p 2146–2156

    Article  Google Scholar 

  6. K.T. Gillen, M. Celina, and M.R. Keenan, Methods for Predicting more Confident Lifetimes of Seals in Air Environments, Rubber Chem. Technol., 2000, 73, p 265–283

    Article  Google Scholar 

  7. P. Richters, Initiation Process in the Oxidation of Polypropylene, Macromolecules, 1970, 3, p 262–264

    Article  Google Scholar 

  8. F. Gugumus, Effect of Temperature on the Lifetime of Stabilized and Unstabilized PP Films, Polym. Degrad. Stab., 1999, 63, p 41–52

    Article  Google Scholar 

  9. P. Gijsman, J. Hennekens, and J. Vincent, The Influence of Temperature and Catalyst Residues on the Degradation of Unstabilized Polypropylene, Polym. Degrad. Stab., 1993, 39, p 271–277

    Article  Google Scholar 

  10. J. Wise, K.T. Gillen, and R.L. Clough, An Ultrasensitive Technique for Testing the Arrhenius Extrapolation Assumption for Thermallyaged Elastomers, Polym. Degrad. Stab., 1995, 49, p 403–418

    Article  Google Scholar 

  11. K.T. Gillen, M. Celina, R.L. Clough, and J. Wise, Extrapolation of Accelerated Aging Data-Arrhenius or Erroneous, Trends Polym. Sci., 1997, 5, p 250–257

    Google Scholar 

  12. K.T. Gillen and M. Celina, The Wear-Out Approach for Predicting the Remaining Lifetime of Materials, Polym. Degrad. Stab., 2001, 71, p 15–30

    Article  Google Scholar 

  13. M. Celina, J. Wise, D.K. Ottesen, K.T. Gillen, and R.L. Clough, Oxidation Profiles of Thermally Aged Neoprene, Polym. Degrad. Stab., 2000, 68, p 171–184

    Article  Google Scholar 

  14. M. Celina, K.T. Gillen, A.C. Graham, R.A. Assink, and L.M. Minier, Thermal Degradation Studies of a Polyurethane Propellant Binder, Rubber Chem. Technol., 2000, 73, p 678–693

    Article  Google Scholar 

  15. R. Bernstein and K.T. Gillen, Predicting the Lifetime of Fluorosilicone o-Rings, Polym. Degrad. Stab., 2009, 94, p 2107–2113

    Article  Google Scholar 

  16. K.T. Gillen, R. Bernstein, and M.H. Wilson, Predicting and Confirming the Lifetime of o-Rings, Polym. Degrad. Stab., 2005, 87, p 257–270

    Article  Google Scholar 

  17. K.T. Gillen, M. Celina, and R. Bernstein, Validation of Improved Methods for Predicting Long-Term Elastomeric Seal Lifetimes from Compression Stress-Relaxation and Oxygen Cconsumption Techniques, Polym. Degrad. Stab., 2003, 82, p 25–35

    Article  Google Scholar 

  18. J.R. Cho, K.C. Han, J.S. Kim, S.B. Lee, and O.K. Lim, Fatigue Life Prediction and Optimum Topology Design of EPDM Weather Strip, Finite Elem. Anal. Des., 2012, 60, p 57–63

    Article  Google Scholar 

  19. F. Le Lay, Study on the Lifetime of EPDM Seals in Nuclear-Powered Vessels, Radiat. Phys. Chem., 2013, 84, p 210–217

    Article  Google Scholar 

  20. A. Kommling, M. Jaunich, and D. Wolff, Effects of Heterogeneous Aging in Compressed HNBR and EPDM O-Ring Seals, Polym. Degrad. Stab., 2016, 126, p 39–46

    Article  Google Scholar 

  21. T. Cui, Y.J. Chao, and J.W. Van Zee, Stress Relaxation Behavior of EPDM Seals in Polymer Electrolyte Membrane Fuel Cell Environment, Int. J Hydrog. Energy, 2012, 37, p 13478–13483

    Article  Google Scholar 

  22. ASTM Standard 6147-97, Standard Test Method for Vulcanized Rubber and Thermoplastic Elastomer—Determination of Force Decay (Stress Relaxation) in Compression

  23. GB/T 7759-1996, Rubber, Vulcanized or Thermoplastic—Determination of Compression Set at Ambient Elevated or Low Temperatures

  24. A.V. Tobolsky, Properties and Structure of Polymers, Wiley, New York, 1960

    Google Scholar 

  25. J.D. Ferry, Viscoelastic Properties of Polymers, 2nd ed., Wiley, New York, 1970

    Google Scholar 

  26. K. Murakami and K. Ono, Chemorheology of Polymers, Elsevier, Amsterdam, 1979

    Google Scholar 

  27. J.G. Curro and P. Pincus, A Theoretical Basis for Viscoelastic Relaxation of Elastomers in the Long-Term Limit, Macromolecules, 1983, 16, p 559–562

    Article  Google Scholar 

  28. S. Ronan, T. Alshuth, S. Jerrams, and N. Murphy, Long-Term Stress Relaxation Prediction for Elastomers Using the Time–Temperature Superposition Method, Mater. Des., 2007, 28, p 1513–1523

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Shandong Province Natural Science Foundation Grant No. ZR2016BQ15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, X., Xu, L. et al. Service Lifetime Estimation of EPDM Rubber Based on Accelerated Aging Tests. J. of Materi Eng and Perform 26, 1735–1740 (2017). https://doi.org/10.1007/s11665-017-2519-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2519-8

Keywords

Navigation