Journal of Materials Engineering and Performance

, Volume 26, Issue 4, pp 1735–1740 | Cite as

Service Lifetime Estimation of EPDM Rubber Based on Accelerated Aging Tests

Article
  • 201 Downloads

Abstract

Service lifetime of ethylene propylene diene monomer (EPDM) rubber at room temperature (25 °C) was estimated based on accelerated aging tests. The study followed sealing stress loss on compressed cylinder samples by compression stress relaxation methods. The results showed that the cylinder samples of EPDM can quickly reach the physical relaxation equilibrium by using the over-compression method. The non-Arrhenius behavior occurred at the lowest aging temperature. A significant linear relationship was observed between compression set values and normalized stress decay results, and the relationship was not related to the ambient temperature of aging. It was estimated that the sealing stress loss in view of practical application would occur after around 86.8 years at 25 °C. The estimations at 25 °C based on the non-Arrhenius behavior were in agreement with compression set data from storage aging tests in natural environment.

Keywords

aging EPDM nonlinearity service lifetime superposition principle 

Notes

Acknowledgments

This work was financially supported by Shandong Province Natural Science Foundation Grant No. ZR2016BQ15.

References

  1. 1.
    N. Tomohiro, H. Toshio, Y. Yukihiro, K. Tetsuya, and T. Sekiya, Thermal Degradation of Chlorosulfonated Polyethylene Rubber and Ethylene Propylene Diene Terpolymer, Mater. Des., 2012, 42, p 147–155CrossRefGoogle Scholar
  2. 2.
    G.J. Lake, Fatigue and Fracture of Elastomers, Rubber Chem. Technol., 1997, 68, p 435–460CrossRefGoogle Scholar
  3. 3.
    K.T. Gillen, M. Celina, R. Bernstein, and M. Shedd, Lifetime Predictions of EPR Materials Using the Wear-Out Approach, Polym. Degrad. Stab., 2006, 91, p 3197–3207CrossRefGoogle Scholar
  4. 4.
    S.W. Chang and S.P. Hyun, Useful Lifetime Prediction of Rubber Component, Eng. Fail. Anal., 2011, 18, p 1645–1651CrossRefGoogle Scholar
  5. 5.
    K.T. Gillen, R. Bernstein, R.L. Clough, and M. Celina, Lifetime Predictions for Semicrystalline Materials: I. Mechanical Properties and Oxygen Consumption Measurements on EPR Materials, Polym. Degrad. Stab., 2006, 91, p 2146–2156CrossRefGoogle Scholar
  6. 6.
    K.T. Gillen, M. Celina, and M.R. Keenan, Methods for Predicting more Confident Lifetimes of Seals in Air Environments, Rubber Chem. Technol., 2000, 73, p 265–283CrossRefGoogle Scholar
  7. 7.
    P. Richters, Initiation Process in the Oxidation of Polypropylene, Macromolecules, 1970, 3, p 262–264CrossRefGoogle Scholar
  8. 8.
    F. Gugumus, Effect of Temperature on the Lifetime of Stabilized and Unstabilized PP Films, Polym. Degrad. Stab., 1999, 63, p 41–52CrossRefGoogle Scholar
  9. 9.
    P. Gijsman, J. Hennekens, and J. Vincent, The Influence of Temperature and Catalyst Residues on the Degradation of Unstabilized Polypropylene, Polym. Degrad. Stab., 1993, 39, p 271–277CrossRefGoogle Scholar
  10. 10.
    J. Wise, K.T. Gillen, and R.L. Clough, An Ultrasensitive Technique for Testing the Arrhenius Extrapolation Assumption for Thermallyaged Elastomers, Polym. Degrad. Stab., 1995, 49, p 403–418CrossRefGoogle Scholar
  11. 11.
    K.T. Gillen, M. Celina, R.L. Clough, and J. Wise, Extrapolation of Accelerated Aging Data-Arrhenius or Erroneous, Trends Polym. Sci., 1997, 5, p 250–257Google Scholar
  12. 12.
    K.T. Gillen and M. Celina, The Wear-Out Approach for Predicting the Remaining Lifetime of Materials, Polym. Degrad. Stab., 2001, 71, p 15–30CrossRefGoogle Scholar
  13. 13.
    M. Celina, J. Wise, D.K. Ottesen, K.T. Gillen, and R.L. Clough, Oxidation Profiles of Thermally Aged Neoprene, Polym. Degrad. Stab., 2000, 68, p 171–184CrossRefGoogle Scholar
  14. 14.
    M. Celina, K.T. Gillen, A.C. Graham, R.A. Assink, and L.M. Minier, Thermal Degradation Studies of a Polyurethane Propellant Binder, Rubber Chem. Technol., 2000, 73, p 678–693CrossRefGoogle Scholar
  15. 15.
    R. Bernstein and K.T. Gillen, Predicting the Lifetime of Fluorosilicone o-Rings, Polym. Degrad. Stab., 2009, 94, p 2107–2113CrossRefGoogle Scholar
  16. 16.
    K.T. Gillen, R. Bernstein, and M.H. Wilson, Predicting and Confirming the Lifetime of o-Rings, Polym. Degrad. Stab., 2005, 87, p 257–270CrossRefGoogle Scholar
  17. 17.
    K.T. Gillen, M. Celina, and R. Bernstein, Validation of Improved Methods for Predicting Long-Term Elastomeric Seal Lifetimes from Compression Stress-Relaxation and Oxygen Cconsumption Techniques, Polym. Degrad. Stab., 2003, 82, p 25–35CrossRefGoogle Scholar
  18. 18.
    J.R. Cho, K.C. Han, J.S. Kim, S.B. Lee, and O.K. Lim, Fatigue Life Prediction and Optimum Topology Design of EPDM Weather Strip, Finite Elem. Anal. Des., 2012, 60, p 57–63CrossRefGoogle Scholar
  19. 19.
    F. Le Lay, Study on the Lifetime of EPDM Seals in Nuclear-Powered Vessels, Radiat. Phys. Chem., 2013, 84, p 210–217CrossRefGoogle Scholar
  20. 20.
    A. Kommling, M. Jaunich, and D. Wolff, Effects of Heterogeneous Aging in Compressed HNBR and EPDM O-Ring Seals, Polym. Degrad. Stab., 2016, 126, p 39–46CrossRefGoogle Scholar
  21. 21.
    T. Cui, Y.J. Chao, and J.W. Van Zee, Stress Relaxation Behavior of EPDM Seals in Polymer Electrolyte Membrane Fuel Cell Environment, Int. J Hydrog. Energy, 2012, 37, p 13478–13483CrossRefGoogle Scholar
  22. 22.
    ASTM Standard 6147-97, Standard Test Method for Vulcanized Rubber and Thermoplastic Elastomer—Determination of Force Decay (Stress Relaxation) in Compression Google Scholar
  23. 23.
    GB/T 7759-1996, Rubber, Vulcanized or Thermoplastic—Determination of Compression Set at Ambient Elevated or Low Temperatures Google Scholar
  24. 24.
    A.V. Tobolsky, Properties and Structure of Polymers, Wiley, New York, 1960Google Scholar
  25. 25.
    J.D. Ferry, Viscoelastic Properties of Polymers, 2nd ed., Wiley, New York, 1970Google Scholar
  26. 26.
    K. Murakami and K. Ono, Chemorheology of Polymers, Elsevier, Amsterdam, 1979Google Scholar
  27. 27.
    J.G. Curro and P. Pincus, A Theoretical Basis for Viscoelastic Relaxation of Elastomers in the Long-Term Limit, Macromolecules, 1983, 16, p 559–562CrossRefGoogle Scholar
  28. 28.
    S. Ronan, T. Alshuth, S. Jerrams, and N. Murphy, Long-Term Stress Relaxation Prediction for Elastomers Using the Time–Temperature Superposition Method, Mater. Des., 2007, 28, p 1513–1523CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringYantai UniversityYantaiPeople’s Republic of China
  2. 2.State Key Laboratory for Marine Corrosion and ProtectionLuoyang Ship Material Research Institute (LSMRI)QingdaoPeople’s Republic of China

Personalised recommendations