Skip to main content
Log in

Deformation Behavior of Severely Deformed Al and Related Mechanisms Through Warm Tensile Test

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Flow stress and ductility behaviors of the annealed and severely deformed Al were investigated at warm deformation temperatures. Constrained groove pressing (CGP) method as a severe plastic deformation process was used. The tensile test was carried out at the temperature range of the 298-573 K and strain rate range of 0.001-0.1 s−1 to present the elevated temperature deformation behavior utilizing hyperbolic sine constitutive equation. The flow stress of the CGPed sample is increased with the number of CGP passes and decreased with temperature. Dynamic recovery and strain softening are found as main restoration mechanisms. Flow stress amounts are not remarkably affected by the strain rate. Values of the elongation are decreased with the number of CGP passes. Values of the calculated strain rate sensitivity are utilized to justify the elongation behavior. Shear bands created by CGP remarkably decrease the fracture elongation values. Temperature interval of 298-473 K cannot remarkably affect the flow stress and ductility. The interval of 473-573 K is chosen as critical temperature interval in which the values of flow stress and elongation are remarkably decreased and increased, respectively. Increasing the temperature up to 573 K causes recrystallization in shear bands. Scanning electron microscope was used to study fracture surface which can truly predict the elongation behavior. With increasing the temperature, the shear decohesion area is gradually replaced with fully dimpled structures. Finally, hot deformation activation energy for CGPed samples was calculated about 85 kJ/mol which is close to the grain boundary diffusion activation energy in pure Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. K. Ivanov and E. Naydenkin, Activation Parameters and Deformation Mechanisms of Ultrafine-Grained Copper Under Tension at Moderate Temperatures, Mater. Sci. Eng. A, 2014, 608, p 123–129

    Article  Google Scholar 

  2. R. Kapoor and J. Chakravartty, Deformation Behavior of an Ultrafine-Grained Al-Mg Alloy Produced by Equal-Channel Angular Pressing, Acta Mater., 2007, 55(16), p 5408–5418

    Article  Google Scholar 

  3. A. Azimi, S. Tutunchilar, G. Faraji, and M.B. Givi, Mechanical Properties and Microstructural Evolution During Multi-Pass ECAR of Al 1100-O Alloy, Mater. Des., 2012, 42, p 388–394

    Article  Google Scholar 

  4. M.S. Soliman, E.A. El-Danaf, and A.A. Almajid, Enhancement of Static and Fatigue Strength of 1050 Al Processed by Equal-Channel Angular Pressing Using Two Routes, Mater. Sci. Eng. A, 2012, 532, p 120–129

    Article  Google Scholar 

  5. E.A. El-Danaf, Mechanical Properties and Microstructure Evolution of 1050 Aluminum Severely Deformed by Ecap to 16 Passes, Mater. Sci. Eng. A, 2008, 478(1), p 189–200

    Article  Google Scholar 

  6. B. Tolaminejad and K. Dehghani, Microstructural Characterization and Mechanical Properties of Nanostructured AA1070 Aluminum After Equal Channel Angular Extrusion, Mater. Des., 2012, 34, p 285–292

    Article  Google Scholar 

  7. E. Hosseini and M. Kazeminezhad, A New Microstructural Model Based on Dislocation Generation and Consumption Mechanisms Through Severe Plastic Deformation, Comput. Mater. Sci., 2011, 50(3), p 1123–1135

    Article  Google Scholar 

  8. J. Zrnik, T. Kovarik, Z. Novy, and M. Cieslar, Ultrafine-Grained Structure Development and Deformation Behavior of Aluminium Processed by Constrained Groove Pressing, Mater. Sci. Eng. A, 2009, 503(1), p 126–129

    Article  Google Scholar 

  9. A. Krishnaiah, U. Chakkingal, and P. Venugopal, Production of Ultrafine Grain Sizes in Aluminium Sheets by Severe Plastic Deformation Using the Technique of Groove Pressing, Scr. Mater., 2005, 52(12), p 1229–1233

    Article  Google Scholar 

  10. N. Tsuji, T. Toyoda, Y. Minamino, Y. Koizumi, T. Yamane, M. Komatsu, and M. Kiritani, Microstructural Change of Ultrafine-Grained Aluminum During High-Speed Plastic Deformation, Mater. Sci. Eng. A, 2003, 350(1), p 108–116

    Article  Google Scholar 

  11. C. Xu, K. Xia, and T.G. Langdon, The Role of Back Pressure in the Processing of Pure Aluminum by Equal-Channel Angular Pressing, Acta Mater., 2007, 55(7), p 2351–2360

    Article  Google Scholar 

  12. M. Hockauf and L.W. Meyer, Work-Hardening Stages of AA1070 and AA6060 After Severe Plastic Deformation, J. Mater. Sci., 2010, 45(17), p 4778–4789

    Article  Google Scholar 

  13. E. Rafizadeh, A. Mani, and M. Kazeminezhad, The Effects of Intermediate and Post-Annealing Phenomena on the Mechanical Properties and Microstructure of Constrained Groove Pressed Copper Sheet, Mater. Sci. Eng. A, 2009, 515(1), p 162–168

    Article  Google Scholar 

  14. N. Kamikawa, N. Tsuji, X. Huang, and N. Hansen, Quantification of Annealed Microstructures in ARB Processed Aluminum, Acta Mater., 2006, 54(11), p 3055–3066

    Article  Google Scholar 

  15. F. Khodabakhshi and M. Kazeminezhad, The Annealing Phenomena and Thermal Stability of Severely Deformed Steel Sheet, Mater. Sci. Eng. A, 2011, 528(15), p 5212–5218

    Article  Google Scholar 

  16. N.Q. Chinh, T. Csanádi, J. Gubicza, R. Valiev, B.B. Straumal, and T.G. Langdon, The Effect of Grain Boundary Sliding and Strain Rate Sensitivity on the Ductility of Ultrafine-Grained Materials, Mater. Sci. Forum, 2010, 667, p 677–682

    Article  Google Scholar 

  17. N.Q. Chinh, T. Csanádi, T. Győri, R. Valiev, B.B. Straumal, M. Kawasaki, and T.G. Langdon, Strain Rate Sensitivity Studies in an Ultrafine-Grained Al-30 wt.% Zn Alloy Using Micro-and Nanoindentation, Mater. Sci. Eng. A, 2012, 543, p 117–120

    Article  Google Scholar 

  18. Y. Jia, F. Cao, S. Guo, P. Ma, J. Liu, and J. Sun, Hot Deformation Behavior of Spray-Deposited Al-Zn-Mg-Cu Alloy, Mater. Des., 2014, 53, p 79–85

    Article  Google Scholar 

  19. A. Rollett, F.J. Humphreys, G.S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, New York, 2004

    Google Scholar 

  20. C. Shi, W. Mao, and X. Chen, Evolution of Activation Energy During Hot Deformation of AA7150 Aluminum Alloy, Mater. Sci. Eng. A, 2013, 571, p 83–91

    Article  Google Scholar 

  21. Y.C. Lin, Y. Ding, M.S. Chen, and J. Deng, A New Phenomenological Constitutive Model for Hot Tensile Deformation Behaviors of a Typical Al-Cu-Mg Alloy, Mater. Des., 2013, 52, p 118–127

    Article  Google Scholar 

  22. M. Zhou, Y.C. Lin, J. Deng, and Y.Q. Jiang, Hot Tensile Deformation Behaviors and Constitutive Model of an Al-Zn-Mg-Cu Alloy, Mater. Des., 2014, 59, p 141–150

    Article  Google Scholar 

  23. Y. Li, X. Zeng, and W. Blum, Transition from Strengthening to Softening by Grain Boundaries in Ultrafine-Grained Cu, Acta Mater., 2004, 52(17), p 5009–5018

    Article  Google Scholar 

  24. Y.G. Ko, D.H. Shin, K.T. Park, and C.S. Lee, An Analysis of the Strain Hardening Behavior of Ultra-Fine Grain Pure Titanium, Scr. Mater., 2006, 54(10), p 1785–1789

    Article  Google Scholar 

  25. X. Huang, H. Zhang, Y. Han, W. Wu, and J. Chen, Hot Deformation Behavior of 2026 Aluminum Alloy During Compression at Elevated Temperature, Mater. Sci. Eng. A, 2010, 527(3), p 485–490

    Article  Google Scholar 

  26. N. Jin, H. Zhang, Y. Han, W. Wu, and J. Chen, Hot Deformation Behavior of 2026 Aluminum Alloy During Compression at Elevated Temperature, Mater. Charact., 2009, 60(6), p 530–536

    Article  Google Scholar 

  27. H.E. Hu, L. Zhen, L. Yang, W.Z. Shao, and B.Y. Zhang, Deformation Behavior and Microstructure Evolution of 7050 Aluminum Alloy During High Temperature Deformation, Mater. Sci. Eng. A, 2008, 488(1), p 64–71

    Article  Google Scholar 

  28. C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14(9), p 1136–1138

    Article  Google Scholar 

  29. H. McQueen and N. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322(1), p 43–63

    Article  Google Scholar 

  30. S. Spigarelli, E. Evangelista, E. Cerri, and T.G. Langdon, Constitutive Equations for Hot Deformation of an Al-6061/20% Al2o3 Composite, Mater. Sci. Eng. A, 2001, 319, p 721–725

    Article  Google Scholar 

  31. N. Afrin, D.L. Chen, X. Cao, and M. Jahazi, Strain Hardening Behavior of a Friction Stir Welded Magnesium Alloy, Scr. Mater., 2007, 57(11), p 1004–1007

    Article  Google Scholar 

  32. G. Hasani and R. Mahmudi, Tensile Properties of Hot Rolled Mg-3Sn-1Ca Alloy Sheets at Elevated Temperatures, Mater. Des., 2011, 32(7), p 3736–3741

    Article  Google Scholar 

  33. R. Mahmudi, Post-uniform Deformation in Uniaxial and Equi-Biaxial Stretching of Aluminium Alloy Sheets, J. Mater. Process. Technol., 1997, 70(1), p 93–98

    Article  Google Scholar 

  34. R. Mahmudi, Forming Limits in Biaxial Stretching of Aluminium Sheets and Foils, J. Mater. Process. Technol., 1993, 37(1), p 203–216

    Article  Google Scholar 

  35. D. Bae and A. Ghosh, Grain Size and Temperature Dependence of Superplastic Deformation in An Al-Mg Alloy Under Isostructural Condition, Acta Mater., 2000, 48(6), p 1207–1224

    Article  Google Scholar 

  36. D.G. Morris and M.A. Muñoz-Morris, Microstructure of Severely Deformed Al-3 Mg and its Evolution During Annealing, Acta Mater., 2002, 50(16), p 4047–4060

    Article  Google Scholar 

  37. E. Hosseini and M. Kazeminezhad, Integration of Physically Based Models into FE Analysis: Homogeneity of Copper Sheets Under Large Plastic Deformations, Comput. Mater. Sci., 2010, 48(1), p 166–173

    Article  Google Scholar 

  38. V.M. Segal, Deformation Mode and Plastic Flow in Ultra Fine Grained Metals, Mater. Sci. Eng. A, 2005, 406(1), p 205–216

    Article  Google Scholar 

  39. Mohamed El Aal, The Effect of the Pre-homogenization Treatment on the Fracture Characteristics and Wear Properties of ECAPed Al-Cu Alloys, Mater. Sci. Eng. A, 2012, 539, p 308–323

    Article  Google Scholar 

  40. A. Shokuhfar and O. Nejadseyfi, A Comparison of the Effects of Severe Plastic Deformation and Heat Treatment on the Tensile Properties and Impact Toughness of Aluminum Alloy 6061, Mater. Sci. Eng. A, 2014, 594, p 140–148

    Article  Google Scholar 

  41. M.V. Markushev et al., Structure and Properties of Ultra-Fine Grained Aluminium Alloys Produced by Severe Plastic Deformation, Mater. Sci. Eng. A, 1997, 234, p 927–931

    Article  Google Scholar 

  42. G.E. Dieter and D.J. Bacon, Mechanical Metallurgy, McGraw-Hill, New York, 1986

    Google Scholar 

  43. M. Mostafaei and M. Kazeminezhad, Hot Deformation Behavior of Hot Extruded Al-6 Mg Alloy, Mater. Sci. Eng. A, 2012, 535, p 216–221

    Article  Google Scholar 

  44. J.J. Shen, K. Ikeda, S. Hata, and H. Nakashima, Creep Mechanisms in a Fine-Grained Al-5356 Alloy at Low Stress and High Temperature, Mater. Trans., 2011, 52(10), p 1890–1898

    Article  Google Scholar 

  45. E.F. Dudarev, G.P. Pochivalova, YuR Kolobov, E.V. Naydenkin, and O.A. Kashin, Diffusion-Controlled True Grain-Boundary Sliding in Nanostructured Metals and Alloys, Mater. Sci. Eng. A, 2009, 503(1), p 58–61

    Article  Google Scholar 

  46. J. Lin, X. An, and T. Lei, Dynamic Recrystallization During Hot-Rolling in Al-6 Mg Alloy, J. Mater. Sci. Lett., 1993, 12(11), p 850–851

    Article  Google Scholar 

  47. C.M. Kuo, C.H. Tso, and C.H. Lin, Plastic Instability of Al-Mg Alloys During Stress Rate Change Test, J. Mater. Res., 2004, 19(01), p 31–45

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the research board of Sharif University of Technology for the financial support and the provision of the research facilities used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kazeminezhad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charkhesht, V., Kazeminezhad, M. Deformation Behavior of Severely Deformed Al and Related Mechanisms Through Warm Tensile Test. J. of Materi Eng and Perform 26, 1311–1324 (2017). https://doi.org/10.1007/s11665-017-2504-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2504-2

Keywords

Navigation