Journal of Materials Engineering and Performance

, Volume 26, Issue 1, pp 453–459 | Cite as

Low-Temperature Sintering of AlN Ceramics by Sm2O3-Y2O3-CaO Sintering Additives Formed via Decomposition of Nitrate Solutions

  • Jun Zhan
  • Ye Cao
  • Hao Zhang
  • Jun Guo
  • Jianhua Zhang
  • Chunlei Geng
  • Changdong Shi
  • Song Cui
  • Wenming Tang
Article
  • 105 Downloads

Abstract

The Sm, Y and Ca anhydrous nitrates were mixed with the AlN powder in ethanol and then decomposed into the Sm2O3-Y2O3-CaO sintering additives via calcining. Low-temperature sintering of the AlN ceramics was carried out at temperature range from 1675 to 1750 °C. Effects of the composition and adding amount of the sintering additives on the phases, microstructures and properties of the AlN ceramics were investigated. During sintering the AlN ceramics, main secondary phases of CaYAl3O7 and CaSmAl3O7 form. The relative density, bending strength and thermal conductivity of the AlN ceramics increase with the increase in the rare-earth oxides in them. The thermal conductivity of the sintered AlN ceramics is also greatly affected by the distribution of the secondary phases. As sintered at 1750 °C, the AlN ceramics by adding the sintering additives of 2 wt.% Sm2O3, 2 wt.% Y2O3 and 1 wt.% CaO formed via decomposition of their nitrates is fully dense and have the optimal bending strength and thermal conductivity of 402.1 MPa and 153.7 W/(m K), respectively.

Keywords

AlN liquid-phase sintering microstructure property sintering additive 

Notes

Acknowledgments

This work was financially supported by Mega Project of Scientific and Technological Research, Anhui Province, China (Grant No. 15czz02047), and Natural Science Research Project in Colleges and Universities, Anhui Province, China.

References

  1. 1.
    Y.J. Yao, C.C. Li, X.L. Jiang, B. Liu, and T. Qiu, Effects of Rare Earth Oxide Additives on Dielectric Behaviors of Aluminum Nitride Ceramics, J. Chin. Ceram. Soc., 2010, 38(10), p 1982–1985Google Scholar
  2. 2.
    T. Okuni, Y. Miyamoto, H. Abe, and M. Naito, Joining of AlN and Graphite Disks Using Interlayer Tapes by Spark Plasma Sintering, Mater. Des., 2014, 54, p 755–759CrossRefGoogle Scholar
  3. 3.
    C.J. Duan, D.S. Yang, C.L. Jia, and Q. Wang, Spark Plasma Sintering of Aluminum Nitride, J. Chin. Ceram. Soc., 2003, 31(4), p 389–392Google Scholar
  4. 4.
    H. Nakano, K. Watari, and K. Urabe, Grain Boundary Phase in AlN Ceramics Fired under Reducing N2 Atmosphere with Carbon, J. Eur. Ceram. Soc., 2003, 23(10), p 1761–1768CrossRefGoogle Scholar
  5. 5.
    K. Watari, M.C. Valecillos, M.E. Brito, M. Toriyama, and S. Kanzaki, Densification and Thermal Conductivity of AIN Doped with Y2O3, CaO, and Li2O, J. Am. Ceram. Soc., 1996, 79(12), p 3103–3108CrossRefGoogle Scholar
  6. 6.
    X.L. Huang, Q.Z. Ma, F. Li, and H.Q. Liu, Influence of CaO-Y2O3 as Sintering Aid on the Microstructure and Properties of AlN Ceramics, J. Inorg. Mater., 2002, 17(2), p 277–282Google Scholar
  7. 7.
    X.R. Xu, H.R. Zhuang, W.L. Li, S.Y. Xu, B.L. Zhang, and X.R. Fu, Improving Thermal Conductivity of Sm2O3 Doped AlN Ceramics by Changing Sintering Conditions, Mater. Sci. Eng. A, 2003, 342(1), p p104–p108CrossRefGoogle Scholar
  8. 8.
    W.M. Tang, H. Zhang, S. Cui, Y.B. Wu, J. Zhan, A Method for Preparing the AlN Ceramics Substrate for Microelectronic Packaging, China Patent No. 201310454486.1Google Scholar
  9. 9.
    Y.P. Udalov, Z.S. Appen, and V.V. Parshina, Phase Diagrams for Ceramists, Westerville, The American Ceramic Society, Ohio, 1987Google Scholar
  10. 10.
    A.L. Molisani, H.N. Yoshimura, and H. Goldenstein, Sintering Mechanisms in Aluminum Nitride with Y or Ca-containing Additive, J. Mater. Sci. Mater. Electron., 2009, 20, p 1–8CrossRefGoogle Scholar
  11. 11.
    A.I. Zaitsev, N.V. Korolev, and B.M. Mogutnov, Phase Equilibria in the CaF2-Al2O3-CaO System, J. Mater. Sci., 1991, 26(6), p 1588–1600CrossRefGoogle Scholar
  12. 12.
    S.P. Taguchi, F.V. Motta, R.M. Balestra, and S. Rabeiro, Wetting Behavior of SiC Ceramics Part II-Y2O3/Al2O3 and Sm2O3/Al2O3, Mater. Lett., 2004, 58, p 2810–2814CrossRefGoogle Scholar
  13. 13.
    Z.D. Guan, Z.T. Zhang, and J.S. Jiao, Physical Properties of Inorganic Materials, Tsinghua University Press, Beijing, 1992Google Scholar
  14. 14.
    G.A. Slack, R.A. Tanzilli, and R.O. Pohl, The Intrinsic Thermal Conductivity of AlN, Phys. Chem. Solids, 1987, 48(7), p 641–647CrossRefGoogle Scholar
  15. 15.
    K.J. Watari, K.Z. Ishzaki, and F. Tsuchiya, Phonon Scattering and Thermal Conduction Mechanisms of Sintered Aluminum Nitride Ceramics, J. Mater. Sci., 1993, 28, p 3709–3714CrossRefGoogle Scholar
  16. 16.
    M.F. Denanot and J. Rabier, Characterization of the Microstructure of Sintered AIN by Transmission Electron Microscopy, Mater. Sci. Eng. A, 1989, 109, p 157–160CrossRefGoogle Scholar
  17. 17.
    A.V. Virkar, T.B. Jackson, and R.A. Cutler, Thermodynamic and Kinetic Effects of Oxygen Removal on the Thermal Conductivity of Aluminum Nitride, J. Am. Ceram. Soc., 1990, 21(10), p 2031–2042Google Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • Jun Zhan
    • 2
  • Ye Cao
    • 1
  • Hao Zhang
    • 2
  • Jun Guo
    • 2
  • Jianhua Zhang
    • 1
  • Chunlei Geng
    • 2
  • Changdong Shi
    • 2
  • Song Cui
    • 2
  • Wenming Tang
    • 1
  1. 1.School of Materials Science and EngineeringHefei University of TechnologyHefeiChina
  2. 2.43 InstituteChina Electronics Technology Group CorporationHefeiChina

Personalised recommendations