Skip to main content
Log in

Effect of Preweld Heat Treatment on the Microstructure of Heat-Affected Zone (HAZ) and Weldability of Inconel 939 Superalloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of two preweld heat treatments on the final microstructure of a heat-affected zone (HAZ) and its effect on the weldability of the superalloy Inconel 939 have been analyzed. The HAZ cracking related to the mechanical driving force criteria during the cooling cycle was directly influenced by the strain state at this zone. Heat treatments result in the formation of (1) irregular γ′ precipitates (more negative misfits) which showed higher strain (high density of interfacial dislocations) and (2) spherical precipitates (near-zero misfits) which as a result of their structure improve weldability by reducing weld HAZ cracking considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.A. González, D.I. Martínez, A. Pérez, H. Guajardo, and A. Garza, Microstructural Response to Heat Affected Zone Cracking of Prewelding Heat-Treated Inconel 939, Mater. Charact., 2011, 62, p 1116–1123

    Article  Google Scholar 

  2. J. Tiley, G.B. Viswanathan, J.Y. Hwang, A. Shiveley, and R. Banerjee, Evalaution of Gamma Prime Volume Fractions and Lattice Misfits in a Nickel Base Superalloy Using Standard X-ray Diffraction Method, Mater. Sci. Eng. A, 2010, 528, p 32–36

    Article  Google Scholar 

  3. S.A. David, S.S. Babu, and J.M. Vitek, Weldability and Microstructure Development in Nickel-Base Superalloys, Proc. Symp. Numer. Anal. Weld V, 1997, p 1-29.

  4. O.M. Barabash, J.A. Horton, S.S. Babu, J.M. Vitek, S.A. David, J.W. Park, G.E. Ice, and R.I. Barabash, Evolution of Dislocation Structure in the Heat Affected Zone of a Nickel-Based Single Crystal, J. Appl. Phys., 2004, 96, p 3673–3679

    Article  Google Scholar 

  5. S.S. Babu, M.K. Miller, J.M. Vitek, and S.A. David, Characterization of the Microstructure Evolution in a Nickel Base Superalloy During Continuos Cooling Conditions, Acta Mater., 2001, 49, p 14149–14160

    Article  Google Scholar 

  6. A.K. Singh, N. Louat, and K. Sadananda, Dislocation Network Formation and Coherency Loos Around Gamma-Prime Precipitates in a Nickel-Base Superalloy, Metall. Trans. A, 1988, 19, p 2965–2973

    Article  Google Scholar 

  7. M. Lachowicz, D. Wlodzimierz, and M. Podrez-Radziszewska, TEM Observation of the Heat-Affected Zone in Electron Beam Welded Superalloy Inconel 713C, Mater. Charact., 2008, 59, p 560–566

    Article  Google Scholar 

  8. M.V. Nathal, R.A. Mackay, and R. Garlick, Temperature Dependance of γ-γ′ Lattice Mismatch in Nickel-Base Superalloys, Mater. Sci. Eng., 1985, 75, p 195–205

    Article  Google Scholar 

  9. M.T. Rush, P.A. Colegrove, Z. Zhang, and B. Courtot, An Investigation into Cracking in Nickel-Base Superalloy Repair Welds, Adv. Mater. Res., 2010, 89-91, p 467–472

    Article  Google Scholar 

  10. J.W. Park, J.W. Vitek, S.A. David and S.S. Babu, Thermo-Mechanical-Metallurgical Modelling of Cracking in Single Crystal Nickel-Base Superalloy Welds, US Department of Energy, 2005

  11. M.A. González, D.I. Martínez, A. Pérez, and H. Guajardo, Microstructural Rejuvenation Trough Non-Conventional Heat Treatments of an Inconel 939 Superalloy, Proc. Symp. Mater. Res. Soc., 2011, 1372, p 1–8

    Google Scholar 

  12. W. Neumann, H. Kirmse, I. Hausler, A. Mogilatenko, C.H. Sheng, and W. Hetab, Advanced Microstructure Diagnostic and Interface Analysis of Modern Materials by High-Resolution Analytical Transmission Electron Microscopy, Bull. Polish Acad. Sci., 2010, 58, p 237–253

    Google Scholar 

  13. Y. Danis, C. Arvieu, E. Lacoste, T. Larrouy, and J.-M. Quenisset, An Investigation on Thermal, Metallurgical and Mechanical States in Weld Cracking of Inconel 738LC Superalloy, Mater. Des., 2010, 31, p 402–416

    Article  Google Scholar 

  14. S. Kou, Precipitation-Hardening Materials II: Nickel-Base Alloys, Welding Metallurgy, 2nd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2003, p 375–391

  15. A. Somoza, G. Santos, A. Ges, R. Versaci, and F. Plazaola, Age-Hardening and Precipitation Phenomena in the Inconel-713C Superalloy Studied by Means of Positron Lifetime Spectroscopy, Phys. Stat. Solidi, 1999, 174, p 189–198

    Article  Google Scholar 

  16. Y. Danis, E. Lacost, and C. Arvieu, Numerical Modeling of Inconel 738LC Deposition Welding: Prediction of Residual Stress Induced Cracking, Mater. Process. Technol, 2010, 210, p 2053–2061

    Article  Google Scholar 

  17. D. Mukherji, R. Gilles, B. Barbier, DDel Genovese, B. Hasse, P. Struz, T. Wroblewski, H. Fuess, and J. Rosler, Lattice Misfit Measurement in Inconel 706 Containing Coherent γ′ and γ″ Precipitates, Scripta Mater., 2003, 48, p 333–339

    Article  Google Scholar 

  18. J.H. Westbrook, Superalloys (Ni-Base) and Dislocations: An Introduction, Dislocations in Solids, 1996, p 1-26.

  19. R.A. Ricks, A.J. Porter, and R.C. Ecob, The Growth of γ′ Precipitates in Nickel-Base Superalloys, Acta Metall., 1983, 31, p 43–53

    Article  Google Scholar 

  20. J.X. Shang, J.C. Wang, H. Harada, and Y. Koizumi, The Effect of Lattice Misfit on the Dislocation Motion in Superalloys During High-Temperature Low-Stress Creep, Acta Mater., 2005, 53, p 4623–4633

    Article  Google Scholar 

  21. T. Link, A. Ephishin, M. Klaus, U. Bruckner, and A. Reznicek, 〈100〉 Dislocation in Nickel-Base Superalloys: Formation and Role in Creep Deformation, Mater. Sci. Eng. A, 2005, 405, p 254–265

    Article  Google Scholar 

  22. J. Li and R.P. Wahi, Investigation of γ/γ′ Lattice Mismatch in the Polycrystalline Nickel-Base Superalloy IN738: Influence of Heat Treatment and Creep Deformation, Acta Metall. Mater., 1995, 43, p 507–517

    Article  Google Scholar 

  23. J.R.P. Djuansjah, K. Yashiro, and Y. Tomita, Computational Study on Misfit Dislocation in Ni-Based Superalloys by Quasicontinuum Method, Mater. Trans., 2008, 49, p 2507–2514

    Article  Google Scholar 

  24. A. Thakur, Microstructural response of a nickel-base cast IN-738 superalloy to a variety of preweld heat-treatments, Metallurgical Science Laboratory, University of Manitoba, 1997, Thesis.

Download references

Acknowledgments

The authors would like to thank CONACyT Mexico and Paicyt for their financial support and also the Universidad Autonoma de Nuevo León and Corporación Mexican de Investigación en Materiales S.A. de C.V. for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. González Albarrán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González Albarrán, M.A., Martínez, D.I., Díaz, E. et al. Effect of Preweld Heat Treatment on the Microstructure of Heat-Affected Zone (HAZ) and Weldability of Inconel 939 Superalloy. J. of Materi Eng and Perform 23, 1125–1130 (2014). https://doi.org/10.1007/s11665-013-0704-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0704-y

Keywords

Navigation