Skip to main content
Log in

Preparation and Characterization of Carbon Microfiber Through Shear Pulverization Using Pan-Mill Equipment

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Carbon microfiber was prepared through shear pulverization using the self-designed pan-mill type equipment at ambient temperature from short carbon fiber (CF). The effects of shear stress on structure transformations, particles size, microfiber morphology, surface functional groups and crystalline properties during pulverization were studied by laser diffraction particle size analyzer, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), x-ray photoelectron spectroscopy (XPS) and wide-angle x-ray diffraction (WAXD), respectively. SEM analysis indicated that CF was milled into microfiber due to the strong shear and squeezing force. The average particle size of carbon microfiber was reduced to 12.7 μm and specific surface area was increased to 0.6 m2/g after 40 milling cycles. FT-IR and XPS analyses showed that the oxygen-containing groups increased after shear pulverization, and WAXD results illustrated that shear stress offered by mill discs had an obvious damage on the crystal structure of CF, leading to a decrease of crystallinity. Thermal analysis showed that carbon microfiber exhibited good thermal stability. The pan-milling shear pulverization technique is an environment-friendly and efficient method for preparing carbon microfiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Endo, C. Kim, K. Nishimura, T. Fujino, and K. Miyashita, Recent Development of Carbon Materials for Li Ion Batteries, Carbon, 2000, 38(2), p 183–197

    Article  CAS  Google Scholar 

  2. K. Shindo, T. Kondo, and Y. Sakurai, Dependence of Hydrogen Storage Characteristics of Mechanically Milled Carbon Materials on Their Host Structures, J. Alloys Compd., 2004, 372(1–2), p 201–207

    Article  CAS  Google Scholar 

  3. E.P. Sheshin, Field Emission of Carbon Fibers, Ultramicroscopy, 1999, 79(1–4), p 101–108

    Article  CAS  Google Scholar 

  4. H. Sugie, M. Tanemura, V. Filip, K. Iwata, K. Takahashi, and F. Okuyama, Carbon Nanotubes as Electron Source in an X-Ray Tube, Appl. Phys. Lett., 2001, 78(17), p 2578–2580

    Article  CAS  ADS  Google Scholar 

  5. Y. Saito, K. Hamaguchi, R. Mizushima, S. Uemura, T. Nagasako, J. Yotani, and T. Shimojo, Field Emission from Carbon Nanotubes and Its Application to Cathode Ray Tube Lighting Elements, Appl. Surf. Sci., 1999, 146(1–4), p 305–311

    Article  CAS  ADS  Google Scholar 

  6. N.S. Xu, Z.S. Wu, S.Z. Deng, and J. Chen, High-Voltage Triode Flat-Panel Display Using Field-Emission Nanotube-Based Thin Films, J. Vac. Sci. Technol. B, 2001, 19(4), p 1370–1372

    Article  CAS  Google Scholar 

  7. E.C. Botelho, C.L. Nogueira, and M.C. Rezende, Monitoring of Nylon 6,6/Carbon Fiber Composites Processing by X-Ray Diffraction and Thermal Analysis, J. Appl. Polym. Sci., 2002, 86(12), p 3114–3119

    Article  CAS  Google Scholar 

  8. T. McNally, P. Boyd, C. McClory, D. Bien, I. Moore, B. Millar, J. Davidson, and T. Carroll, Recycled Carbon Fiber Filled Polyethylene Composites, J. Appl. Polym. Sci., 2008, 107(3), p 2015–2021

    Article  CAS  Google Scholar 

  9. N. Chand and A.M. Naik, Development and High Stress Abrasive Wear Behavior of Milled Carbon Fiber-Reinforced Epoxy Gradient Composites, Polym. Compos., 2008, 29(7), p 736–744

    Article  CAS  Google Scholar 

  10. T. Sugama and K. Gawlik, Milled Carbon Microfiber-Reinforced Poly(phenylenesulfide) Coatings for Abating Corrosion of Carbon Steel, Polym. Polym. Compos., 2003, 11(3), p 161–170

    CAS  Google Scholar 

  11. M.S. Sánchez-Adsuar, A. Linares-Solano, D. Cazorla-Amorós, and L. Ibarra-Rueda, Influence of the Nature and the Content of Carbon Fiber on Properties of Thermoplastic Polyurethane-Carbon Fiber Composites, J. Appl. Polym. Sci., 2003, 90(10), p 2676–2683

    Article  Google Scholar 

  12. S. Carneiro and J.M. Maia, Rheological Behavior of (Short) Carbon Fiber/Thermoplastic Composites. Part I: The Influence of Fiber Type, Processing Conditions and Level of Incorporation, Polym. Compos., 2000, 21(6), p 960–969

    Article  CAS  Google Scholar 

  13. J.L. Li, L.J. Wang, and W. Jiang, Carbon Microspheres Produced by High Energy Ball Milling of Graphite Powder, Appl. Phys. A, 2006, 83(3), p 385–388

    Article  CAS  ADS  Google Scholar 

  14. E.P. Sheshin, A.S. Baturin, K.N. Nikolskiy, R.G. Tchesov, and V.B. Sharov, Field Emission Cathodes Based on Milled Carbon Fibers, Appl. Surf. Sci., 2005, 251(1–4), p 196–200

    Article  CAS  ADS  Google Scholar 

  15. W.G. Shao, Q. Wang, F. Wang, and Y.H. Ch, The Cutting of Multi-Walled Carbon Nanotubes and Their Strong Interfacial Interaction with Polyamide 6 in the Solid State, Carbon, 2006, 44(13), p 2708–2714

    Article  CAS  Google Scholar 

  16. N.J. Welham, V. Berbenni, and P.G. Chapman, Increase Chemisorption onto Activated Carbon After Ball-Milling, Carbon, 2002, 40(13), p 2307–2315

    Article  CAS  Google Scholar 

  17. X. Xu and Q. Wang, Mechanochemical Reactor, CN Patent ZL95111258.9, 1995

  18. X. Xu, Q. Wang, X.A. Kong, X.D. Zhang, and J.G. Huang, A Pan-Mill Type Equipment Designed for Polymer Stress Reactions: Theoretical Analysis of Structure and Milling Process of the Equipment, Plast. Rubber Compos. Process. Appl., 1996, 25(3), p 152–158

    CAS  Google Scholar 

  19. C. Lu and Q. Wang, Preparation of Ultrafine Polypropylene/Iron Composite Powders Through Pan-Milling, J. Mater. Process. Technol., 2004, 145(3), p 336–344

    Article  CAS  Google Scholar 

  20. M. Liang, C. Lu, Y. Huang, and C. Zhang, Morphological and Structural Development of Poly(ether ether ketone) During Mechanical Pulverization, J. Appl. Polym. Sci., 2007, 106(6), p 3895–3902

    Article  CAS  Google Scholar 

  21. W. Zhang, M. Liang, and C. Lu, Morphological and Structural Development of Hardwood Cellulose During Mechanochemical Pretreatment in Solid State Through Pan-Milling, Cellulose, 2007, 14, p 447–456

    Article  CAS  Google Scholar 

  22. http://rsb.info.nih.gov/ij/download.html

  23. http://www.phy.cuhk.edu.hk/~surface/XPSPEAK/

  24. G. Zhang, S. Sun, D. Yang, J.-P. Dodelet, and E. Sacher, The Surface Analytical Characterization of Carbon Fibers Functionalized by H2SO4/HNO3 Treatment, Carbon, 2008, 46(2), p 196–205

    Article  CAS  Google Scholar 

  25. Y.Z. Wan, Y.L. Wang, F.G. Zhou, G.X. Cheng, and K.Y. Han, Three-Dimensionally Braided Carbon Fiber-Epoxy Composites, a New Type of Materials for Osteosynthesis Devices. II. Influence of Fiber Surface Treatment, J. Appl. Polym. Sci., 2002, 85(5), p 1040–1046

    Article  CAS  Google Scholar 

  26. H. Pan, L. Liu, Z.-x. Guo, L. Dai, F. Zhang, D. Zhu, R. Czerw, and D.L. Carroll, Carbon Nanotubols from Mechanochemical Reaction, Nano Lett., 2003, 3(1), p 29–32

    Article  CAS  ADS  Google Scholar 

  27. X.-X. Zhang, C.-H. Lu, and M. Liang, Preparation of Rubber Composites Form Ground Tire Rubber Reinforced with Waste-Tire Fiber Through Mechanical Milling, J. Appl. Polym. Sci., 2007, 103(6), p 4087–4094

    Article  CAS  Google Scholar 

  28. S.-J. Park and B.-J. Kim, Roles of Acidic Functional Groups of Carbon Fiber Surfaces in Enhancing Interfacial Adhesion Behavior, Mater. Sci. Eng. A, 2005, 408(1–2), p 269–273

    Google Scholar 

  29. Z.R. Yue, W. Jiang, L. Wang, and S.D. Gardner, Surface Characterization of Electrochemically Oxidized Carbon Fibers, Carbon, 1999, 37(11), p 1785–1796

    Article  CAS  Google Scholar 

  30. Y.G. Ko, U.S. Choi, J.S. Kim, and Y.S. Park, Novel Synthesis and Characterization of Activated Carbon Fiber and Dye Adsorption Modeling, Carbon, 2002, 40(14), p 2661–2672

    Article  CAS  Google Scholar 

  31. S,-J. Zhang, H.-M. Feng, J.-P. Wang, and H.-Q. Yu, Structure Evolution and Optimization in the Fabrication of PVA-Based Activated Carbon Fibers, J. Colloid Interface Sci., 2008, 321(1), p 96–102

    Article  CAS  PubMed  Google Scholar 

  32. B. Xu, X. Wang, and Y. Lu, Surface Modification of Polyacrylonitrile-Based Carbon Fiber and Its Interaction with Imide, Appl. Surf. Sci., 2006, 253(5), p 2695–2701

    Article  CAS  ADS  Google Scholar 

  33. S.D. Gardner, C.S.K. Singamsetty, G.L. Booth, G.-R. He, and C.U. Pittman, Jr., Surface Characterization of Carbon Fibers Using Angle-Resolved XPS and ISS, Carbon, 1995, 33(5), p 587–595

    Article  CAS  Google Scholar 

  34. U. Zielke, K.J. Hüttinger, and W.P. Hoffman, Surface Oxidized Carbon Fibers: II. Chemical Modification, Carbon, 1996, 34(8), p 999–1005

    Article  CAS  Google Scholar 

  35. H. Zhou, Q. Yu, Q. Peng, H. Wang, J. Chen, and Y. Kuang, Catalytic Graphitization of Carbon Fibers with Electrodeposited Ni–B Alloy Coating, Mater. Chem. Phys., 2008, 110(2–3), p 434–439

    Article  CAS  Google Scholar 

  36. S. Wang, Z.-H. Chen, W.-J. Ma, and Q.-S. Ma, Influence of Heat Treatment on Physical-Chemical Properties of PAN-Based Carbon Fiber, Ceram. Int., 2006, 32(3), p 291–295

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canhui Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, F., Lu, C. & Liang, M. Preparation and Characterization of Carbon Microfiber Through Shear Pulverization Using Pan-Mill Equipment. J. of Materi Eng and Perform 19, 643–649 (2010). https://doi.org/10.1007/s11665-009-9528-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-009-9528-1

Keywords

Navigation