Skip to main content
Log in

Strain- and Temperature-Modulated Growth of Mn3Ga Films

  • Topical Collection: Low-Energy Digital Devices and Computing 2023
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Antiferromagnetic (AF) and ferrimagnetic (FiM) thin films have burgeoning significance in memory and computing applications due to their robustness and ultrafast and energy-efficient switching dynamics. Mn3Ga features a multitude of spin orders that can be meticulously controlled with stoichiometry, temperature, and strain modulations. In this work, we have carefully designed three suitable stacks of Mn3Ga thin films on MgO (111), STO (111) and STO (111)/Ta substrates deposited across varying substrate temperatures up to 500°C. The delicate interplay of strain and temperature tuning is examined by characterizing their magnetic, crystallographic, and morphological properties. The FiM tetragonal τ-Mn3Ga and AF hexagonal ε-Mn3Ga phases display relatively low saturation magnetizations of 10–60 and ≤ 20 kA/m, respectively. No preferential in-plane or out-of-plane magnetic anisotropy is observed for both τ- and ε-Mn3Ga phases. Critically, we observed that the STO strain-regulated τ-phase is stabilized over a wider temperature window and provides more compact, uniformly dispersed grains with average grain size of ~ 100 nm. This work establishes a sturdy methodology in understanding Mn3Ga thin film growth for eventual AF- and FiM-based memory and computing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H.-W. Bang, W. Yoo, C. Kim, S. Lee, J. Gu, Y. Park, K. Lee, and M.-H. Jung, Structural, magnetic, and electrical properties of collinear antiferromagnetic heteroepitaxy cubic Mn3Ga thin films. Appl. Phys. Lett. 115(1), 012402 (2019).

    Article  Google Scholar 

  2. F. Hu, G. Xu, Y. You, Z. Zhang, Z. Xu, Y. Gong, E. Liu, H. Zhang, E. Liu, W. Wang, and F. Xu, Tunable magnetic and transport properties of Mn3Ga thin films on Ta/Ru seed layer. J. Appl. Phys. 123(10), 103902 (2018).

    Article  Google Scholar 

  3. L. Song, W. Li, S. Lv, X. Xi, D. Zhao, J. He, and W. Wang, Tuning the structural, magnetic, and transport properties of Mn3Ga alloys. J. Appl. Phys. 131(17), 173903 (2022).

    Article  CAS  Google Scholar 

  4. H. Wu, I. Sudoh, R. Xu, W. Si, C.A.F. Vaz, J.-Y. Kim, G. Vallejo-Fernandez, and A. Hirohata, Large exchange bias induced by polycrystalline Mn3Ga antiferromagnetic films with controlled layer thickness. J. Phys. D Appl. Phys. 51(21), 215003 (2018).

    Article  Google Scholar 

  5. R.M. Gutiérrez-Pérez, J.T. Holguín-Momaca, J.T. Elizalde-Galindo, F. Espinosa-Magaña, and S.F. Olive-Méndez, Giant magnetization on Mn3Ga ultra-thin films grown by magnetron sputtering on SiO2/Si(001). J. Appl. Phys. 117(12), 123902 (2015).

    Article  Google Scholar 

  6. G. Florio, Structural features of magnetic materials. Encycl. Smart Mater. 5, 1–9 (2022).

    Google Scholar 

  7. P. Qin, H. Yan, X. Wang, H. Chen, Z. Meng, J. Dong, M. Zhu, J. Cai, Z. Feng, X. Zhou, L. Liu, T. Zhang, Z. Zeng, J. Zhang, C. Jiang, and Z. Liu, Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613(7944), 485–489 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. X. Chen, T. Higo, K. Tanaka, T. Nomoto, H. Tsai, H. Idzuchi, M. Shiga, S. Sakamoto, R. Ando, H. Kosaki, T. Matsuo, D. Nishio-Hamane, R. Arita, S. Miwa, and S. Nakatsuji, Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613(7944), 490–495 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Z. Zhao, K. Zhang, Q. Guo, and Y. Jiang, Strain-dependent magnetism and anomalous Hall effect in noncollinear antiferromagnetic Mn3Pt films. Physica E 138, 115141 (2022).

    Article  CAS  Google Scholar 

  10. Z.H. Liu, Y.J. Zhang, G.D. Liu, B. Ding, E.K. Liu, H.M. Jafri, Z.P. Hou, W.H. Wang, X.Q. Ma, and G.H. Wu, Transition from anomalous hall effect to topological hall effect in hexagonal non-collinear magnet Mn3Ga. Sci. Rep. 7(1), 515 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. L. Song, B. Ding, H. Li, S. Lv, Y. Yao, D. Zhao, J. He, and W. Wang, Observation of large exchange bias above room temperature in antiferromagnetic hexagonal Mn3Ga. J. Magn. Magn. Mater. 536, 168109 (2021).

    Article  CAS  Google Scholar 

  12. H. Kurt, K. Rode, M. Venkatesan, P. Stamenov, and J.M.D. Coey, High spin polarization in epitaxial films of ferrimagnetic Mn3Ga. Phys. Rev. B 83(2), 020405 (2011).

    Article  Google Scholar 

  13. B.E. Zuniga-Cespedes, K. Manna, H.M.L. Noad, P.-Y. Yang, M. Nicklas, C. Felser, A.P. Mackenzie, and C.W. Hicks, Observation of an anomalous Hall effect in single-crystal Mn3Pt. New J. Phys. 25(2), 023029 (2023).

    Article  Google Scholar 

  14. Z.Q. Liu, H. Chen, J.M. Wang, J.H. Liu, K. Wang, Z.X. Feng, H. Yan, X.R. Wang, C.B. Jiang, J.M.D. Coey, and A.H. MacDonald, Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat. Electron. 1(3), 172–177 (2018).

    Article  CAS  Google Scholar 

  15. H. Iwaki, M. Kimata, T. Ikebuchi, Y. Kobayashi, K. Oda, Y. Shiota, T. Ono, and T. Moriyama, Large anomalous Hall effect in L12-ordered antiferromagnetic Mn3Ir thin films. Appl. Phys. Lett. 116(2), 022408 (2020).

    Article  Google Scholar 

  16. T. Chen, T. Tomita, S. Minami, M. Fu, T. Koretsune, M. Kitatani, I. Muhammad, D. Nishio-Hamane, R. Ishii, F. Ishii, R. Arita, and S. Nakatsuji, Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn3X, X = Sn Ge. Nat. Commun. 12(1), 572 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. X. Li, J. Koo, Z. Zhu, K. Behnia, and B. Yan, Field-linear anomalous Hall effect and Berry curvature induced by spin chirality in the kagome antiferromagnet Mn3Sn. Nat. Commun. 14(1), 1642 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Y. Zhang, Y. Sun, H. Yang, J. Železný, S.P.P. Parkin, C. Felser, and B. Yan, Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X(X=Ge, Sn, Ga, Ir, Rh, and Pt). Phys. Rev. B 95(7), 075128 (2017).

    Article  Google Scholar 

  19. X. Wang, C. Zhang, Q. Yang, L. Liu, D. Pan, X. Chen, J. Deng, T. Zhai, and H.-X. Deng, Manipulation of crystalline structure, magnetic performance, and topological feature in Mn3Ge films. APL Mater. 9(11), 111107 (2021).

    Article  CAS  Google Scholar 

  20. H.-W. Bang, W. Yoo, K. Lee, Y.H. Lee, and M.-H. Jung, Magnetic and structural phase transitions by annealing in tetragonal and cubic Mn3Ga thin films. J. Alloy. Compd. 869, 159346 (2021).

    Article  CAS  Google Scholar 

  21. J.T. Holguín-Momaca, C.J. Muñoz-Carnero, H. Sharma, C.R. Santillán-Rodríguez, J.A. Matutes-Aquino, C.V. Tomy, and S.F. Olive-Méndez, Tuning the ferromagnetism of epitaxial-strained D019-Mn3Ga thin films. J. Magn. Magn. Mater. 471, 329–333 (2019).

    Article  Google Scholar 

  22. L. Šmejkal, A.H. MacDonald, J. Sinova, S. Nakatsuji, and T. Jungwirth, Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7(6), 482–496 (2022).

    Article  Google Scholar 

  23. S. Chen, J.X.D. Lin, B.C. Lim, H.K. Tan, Y.Y.K. Hnin, S.K. Wong, I. Lim, R.J.J. Lim, K.H. Khoo, and P. Ho, Crystalline and transport characteristics of ferrimagnetic and antiferromagnetic phases in Mn3Ga films. APL Mater. 11, 101126 (2023).

    Article  CAS  Google Scholar 

  24. M. Glas, D. Ebke, I.M. Imort, P. Thomas, and G. Reiss, Anomalous Hall effect in perpendicularly magnetized Mn3−xGa thin films. J. Magn. Magn. Mater. 333, 134–137 (2013).

    Article  CAS  Google Scholar 

  25. B.S. Yang, L.N. Jiang, W.Z. Chen, P. Tang, J. Zhang, X.G. Zhang, Y. Yan, and X.F. Han, First-principles study of perpendicular magnetic anisotropy in ferrimagnetic D22-Mn3X (X= Ga, Ge) on MgO and SrTiO3. Appl. Phys. Lett. 112(14), 142403 (2018).

    Article  Google Scholar 

  26. V. Alijani, J. Winterlik, G.H. Fecher, and C. Felser, Tuning the magnetism of the Heusler alloys Mn3−xCoxGa from soft and half-metallic to hard-magnetic for spin-transfer torque applications. Appl. Phys. Lett. 99(22), 222510 (2011).

    Article  Google Scholar 

  27. T. M. Ahn, Nucleation Kinetics of Crystalline Ordering in Alloy 600 at Elevated Temperature for Study of Stress Corrosion Cracking. Nuclear Regulatory Commission (2018).

Download references

Acknowledgments

This research is supported by A*STAR Project No. C210812017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaohai Chen or Pin Ho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, D.J.X., Lim, B.C., Hnin, Y.Y.K. et al. Strain- and Temperature-Modulated Growth of Mn3Ga Films. J. Electron. Mater. 53, 3503–3509 (2024). https://doi.org/10.1007/s11664-023-10813-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10813-z

Keywords

Navigation