Submonolayer Quantum-Dot Based Saturable Absorber for Femtosecond Pulse Generation

Abstract

Semiconductor saturable absorber mirrors (SESAMs) enable passive modelocking of several ultrafast solid-state lasers. Conventionally, SESAMs in the 1-µm wavelength range have employed InGaAs quantum wells (QWs) as absorbers. We demonstrate here a SESAM based on InAs/GaAs submonolayer quantum dots (SML QDs) capable of generating femtosecond pulses by passively modelocking a vertical-external-cavity surface-emitting laser (VECSEL). Structural measurements are carried out to verify the quality and composition of the QDs. Modelocking experiments with a VECSEL and the QD SESAM in a ring cavity configuration yield pulses as short as 185 fs at 1025 nm. Compared to a traditional QW absorber, SML QD SESAMs exhibit ~ 25% faster recovery times. This also translates to slower power degradation rates or higher damage thresholds in SML QD SESAMs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    U. Keller, Nature 424, 831 (2003).

    CAS  Article  Google Scholar 

  2. 2.

    U. Keller, K.J. Weingarten, F.X. Kartner, D. Kopf, B. Braun, I.D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus Der Au, IEEE J. Sel. Top. Quant. 2, 435 (1996).

    CAS  Article  Google Scholar 

  3. 3.

    U. Keller, in Laser Physics and Applications. G. Herziger, H. Weber, and R. Poprawe Eds., Springer, Berlin, p 33 (2007).

    Google Scholar 

  4. 4.

    K. Viskontas, K. Regelskis, and N. Rusteika, Lith. J. Phys. 54, 3 (2014).

    Article  Google Scholar 

  5. 5.

    A.A. Lagatsky, F.M. Bain, C.T.A. Brown, W. Sibbett, D.A. Livshits, G. Erbert, and E.U. Rafailov, Appl. Phys. Lett. 91, 231111 (2007).

    Article  Google Scholar 

  6. 6.

    D.J.H.C. Maas, A.R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, Opt. Express 16, 8646 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    C.G. Alfieri, D. Waldburger, J. Nürnberg, M. Golling, L. Jaurigue, K. Lüdge, and U. Keller, Phys. Rev. Appl. 10, 044015 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    S.S. Mikhrin, A.E. Zhukov, A.R. Kovsh, N.A. Maleev, V.M. Ustinov, Y.M. Shernyakov, I.P. Soshnikov, D.A. Livshits, I.S. Tarasov, D.A. Bedarev, and B.V. Volovik, Semicond. Sci. Tech. 15, 1061 (2000).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Kim, J.O. Kim, S.J. Lee, and S.K. Noh, J. Korean Phys. Soc. 73, 833 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    B. Lingnau, K. Lüdge, B. Herzog, M. Kolarczik, Y. Kaptan, U. Woggon, and N. Owschimikow, Phys. Rev. B 94, 014305 (2016).

    Article  Google Scholar 

  11. 11.

    S. Sato, and S. Satoh, Jpn. J. Appl. Phys. 38, L990 (1999).

    CAS  Article  Google Scholar 

  12. 12.

    A. Salhi, S. Alshaibani, B. Ilahi, M. Alhamdan, A. Alyamani, H. Albrithen, and M. El-Desouki, J. Alloys Compd. 714, 331 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    G. Balakrishnan, S. Huang, T.J. Rotter, A. Stintz, L.R. Dawson, K.J. Malloy, H. Xu, and D.L. Huffaker, Appl. Phys. Lett. 84, 2058 (2004).

    CAS  Article  Google Scholar 

  14. 14.

    A. Stintz, G.T. Liu, H. Li, L.F. Lester, and K.J. Malloy, IEEE Photon. Technol. Lett. 12, 591 (2000).

    Article  Google Scholar 

  15. 15.

    K.G. Wilcox, A.H. Quarterman, H. Beere, D.A. Ritchie, and A.C. Tropper, IEEE Photon. Technol. Lett. 22, 1021 (2010).

    Article  Google Scholar 

  16. 16.

    A. Lenz, H. Eisele, J. Becker, L. Ivanova, E. Lenz, F. Luckert, K. Pötschke, A. Strittmatter, U.W. Pohl, D. Bimberg, and M. Dähne, Appl. Phys. Express 3, 105602 (2010).

    Article  Google Scholar 

  17. 17.

    Z. Xu, D. Birkedal, J.M. Hvam, Z. Zhao, Y. Liu, K. Yang, A. Kanjilal, and J. Sadowski, Appl. Phys. Lett. 82, 3859 (2003).

    CAS  Article  Google Scholar 

  18. 18.

    R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A.C. Trooper, and U. Keller, Appl. Phys. B 75, 445 (2002).

    CAS  Article  Google Scholar 

  19. 19.

    Z. Vardeny, and J. Tauc, Opt. Commun. 39, 396 (1981).

    CAS  Article  Google Scholar 

  20. 20.

    Y.I. Mazur, Z.M. Wang, G.G. Tarasov, M. Xiao, G.J. Salamo, J.W. Tomm, V. Talalaev, and H. Kissel, Appl. Phys. Lett. 86, 63102 (2005).

    Article  Google Scholar 

  21. 21.

    A. Laurain, I. Kilen, J. Hader, A. Ruiz Perez, P. Ludewig, W. Stolz, S. Addamane, G. Balakrishnan, S.W. Koch, and J.V. Moloney, Appl. Phys. Lett. 113, 121113 (2018).

    Article  Google Scholar 

  22. 22.

    C.J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O.H. Heckl, C.R. Baer, M. Golling, T. Südmeyer, and U. Keller, IEEE J. Sel. Top. Quant. 18, 29 (2011).

    Article  Google Scholar 

  23. 23.

    S.J. Addamane, D. Shima, A. Laurain, H.T. Chan, G. Balakrishnan and J.V. Moloney, in SPIE Conference Proceedings, p. 105150T (2018).

Download references

Acknowledgments

This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. G.T.W. acknowledges funding from Sandia’s LDRD Program. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under Contract:DE-NA0003525. The views expressed in the article do not necessarily represent the views of the U.S. DOE or the United States Government. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA, under Contract 89233218CNA000001.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. J. Addamane.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Addamane, S.J., Laurain, A., Baker, C.W. et al. Submonolayer Quantum-Dot Based Saturable Absorber for Femtosecond Pulse Generation. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-021-08795-x

Download citation

Keywords

  • Femtosecond pulse
  • modelocked laser
  • submonolayer quantum dot
  • saturable absorber
  • ultrafast laser