Skip to main content
Log in

Hexagonal Sodium Lutetium Fluoride Microstructures: Facile and Large-Scale Synthesis, Growth Mechanism and Multicolour Emissions

  • Brief Communication
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Highly crystalline β-NaLuF4:Ln3+ microstructures were successfully prepared via a mixed NaCl-KCl flux cooling approach. The chemical reaction process and the formation mechanism have been carefully investigated by XRD, SEM, TEM and PL characterizations. Interestingly, as the reaction time is prolonged, the crystalline structure of NaLuF4 changes from α-phase to β-phase, while the granule shape transfers from nanoparticles to solid microsheets then to porous microsheets. By altering the kinds of doped lanthanide ions, upconverting and downconverting luminescence with multi-colour outputs (red, green and blue) can be realized in β-NaLuF4:Ln3+ (Ln = Yb, Er, Tm, Ce, Tb and Eu). This strategy is not only expected to meet the ever-increasing commercial demand, but also offers an alternative in synthesizing rare earth fluorides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. J. Zhou, Z. Liu, and F. Li, Chem. Soc. Rev. 41, 1323 (2012).

    Article  CAS  Google Scholar 

  2. E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, Science 273, 1185 (1996).

    Article  CAS  Google Scholar 

  3. C. Zhang, L. Yang, J. Zhao, B. Liu, M.Y. Han, and Z. Zhang, Angew. Chem. Int. Ed. 54, 11531 (2015).

    Article  CAS  Google Scholar 

  4. M. Ding, B. Dong, Y. Lu, X. Yang, Y. Yuan, W. Bai, S. Wu, Z. Ji, C. Lu, K. Zhang, and H. Zeng, Adv. Mater. 32, 2002121 (2020).

    Article  CAS  Google Scholar 

  5. B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, Adv. Mater. 24, 1987 (2012).

    Article  CAS  Google Scholar 

  6. P. Ghosh and A. Patra, J. Phys. Chem. C 112, 3223 (2008).

    Article  CAS  Google Scholar 

  7. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, Nat. Mater.10, 968 (2011).

    Article  CAS  Google Scholar 

  8. M. Ding, D. Chen, S. Yin, Z. Ji, J. Zhong, Y. Ni, C. Lu, and Z. Xu, Sci. Rep. 5, 12745 (2015).

    Article  CAS  Google Scholar 

  9. M. Ding, C. Lu, L. Cao, Y. Ni, and Z. Xu, CrystEngComm 15, 8366 (2013).

    Article  CAS  Google Scholar 

  10. P. Ptacek, H. Schäfer, K. Kömpe, and M. Haase, Adv. Funct. Mater. 17, 3843 (2007).

    Article  CAS  Google Scholar 

  11. Z. Wang, J. Hao, H. Chan, W. Wong, K. Wong, and B. Li, Small 8, 1863 (2012).

    Article  CAS  Google Scholar 

  12. K.W. Krämer, D. Biner, G. Frei, H.U. Güdel, M.P. Hehlen, and S.R. Lüthi, Chem. Mater. 16, 1244 (2004).

    Article  Google Scholar 

  13. L. Wang and Y. Li, Chem. Commun. 16, 2557 (2006).

    Article  Google Scholar 

  14. Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, J. Am. Chem. Soc. 133, 17122 (2011).

    Article  CAS  Google Scholar 

  15. X. Huang, G. Hu, X. Li, and Q. Yu, J. Alloys Compd. 161(15), 652 (2014).

    Article  Google Scholar 

  16. F. Shi, J. Wang, X. Zhai, D. Zhao, and W. Qin, CrystEngComm 13, 3782 (2011).

    Article  CAS  Google Scholar 

  17. N. Niu, P. Yang, F. He, X. Zhang, S. Gai, C. Li, and J. Lin, J. Mater. Chem. 22, 10889 (2012).

    Article  CAS  Google Scholar 

  18. S. Zhou, S. Jiang, X. Wei, Y. Chen, C. Duan, and M. Yin, J. Alloys Compd. 588, 654 (2014).

    Article  CAS  Google Scholar 

  19. C. Li, J. Yang, P. Yang, X. Zhang, H. Lian, and J. Lin, Cryst. Growth Des. 8, 923 (2008).

    Article  CAS  Google Scholar 

  20. Y. Li, Y. Dong, T. Aidilibike, X. Liu, J. Guo, and W. Qin, RSC Adv. 7, 44531 (2017).

    Article  CAS  Google Scholar 

  21. M. Ding, D. Chen, D. Ma, J. Dai, Y. Li, and Z. Ji, J. Mater. Chem. C 4, 2432 (2016).

    Article  CAS  Google Scholar 

  22. Y. Wei, F. Lu, X. Zhang, and D. Chen, Chem. Mater. 18, 5733 (2006).

    Article  CAS  Google Scholar 

  23. R.K. Sharma, A.-V. Mudring, and P. Ghosh, J. Lumin. 189, 44 (2017).

    Article  CAS  Google Scholar 

  24. D. Zhang, M. Ding, B. Dong, Y. Zhen, and Q. Chang, Ceram. Int. 45, 20307 (2019).

    Article  CAS  Google Scholar 

  25. P. Ghosh, R.K. Sharma, Y.N. Chouryal, and A.-V. Mudring, RSC Adv. 7, 33467 (2017).

    Article  CAS  Google Scholar 

  26. P. Ghosh and A.-V. Mudring, Nanoscale 8, 8160 (2016).

    Article  CAS  Google Scholar 

  27. B. Dong, Y. Yuan, M. Ding, W. Bai, S. Wu, and Z. Ji, Nanotechnology 31, 365705 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This present work has been financially supported by the Natural Science Training Foundation of Nanjing Xiaozhuang University for financial support (Grant 2019NXY44).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dunpu Zhang or Hui Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Zhen, Y., Chang, Q. et al. Hexagonal Sodium Lutetium Fluoride Microstructures: Facile and Large-Scale Synthesis, Growth Mechanism and Multicolour Emissions. J. Electron. Mater. 50, 1949–1954 (2021). https://doi.org/10.1007/s11664-021-08789-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08789-9

Keywords

Navigation