Hexagonal Sodium Lutetium Fluoride Microstructures: Facile and Large-Scale Synthesis, Growth Mechanism and Multicolour Emissions

Abstract

Highly crystalline β-NaLuF4:Ln3+ microstructures were successfully prepared via a mixed NaCl-KCl flux cooling approach. The chemical reaction process and the formation mechanism have been carefully investigated by XRD, SEM, TEM and PL characterizations. Interestingly, as the reaction time is prolonged, the crystalline structure of NaLuF4 changes from α-phase to β-phase, while the granule shape transfers from nanoparticles to solid microsheets then to porous microsheets. By altering the kinds of doped lanthanide ions, upconverting and downconverting luminescence with multi-colour outputs (red, green and blue) can be realized in β-NaLuF4:Ln3+ (Ln = Yb, Er, Tm, Ce, Tb and Eu). This strategy is not only expected to meet the ever-increasing commercial demand, but also offers an alternative in synthesizing rare earth fluorides.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. 1.

    J. Zhou, Z. Liu, and F. Li, Chem. Soc. Rev. 41, 1323 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, Science 273, 1185 (1996).

    CAS  Article  Google Scholar 

  3. 3.

    C. Zhang, L. Yang, J. Zhao, B. Liu, M.Y. Han, and Z. Zhang, Angew. Chem. Int. Ed. 54, 11531 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    M. Ding, B. Dong, Y. Lu, X. Yang, Y. Yuan, W. Bai, S. Wu, Z. Ji, C. Lu, K. Zhang, and H. Zeng, Adv. Mater. 32, 2002121 (2020).

    CAS  Article  Google Scholar 

  5. 5.

    B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, Adv. Mater. 24, 1987 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    P. Ghosh and A. Patra, J. Phys. Chem. C 112, 3223 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, Nat. Mater.10, 968 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    M. Ding, D. Chen, S. Yin, Z. Ji, J. Zhong, Y. Ni, C. Lu, and Z. Xu, Sci. Rep. 5, 12745 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    M. Ding, C. Lu, L. Cao, Y. Ni, and Z. Xu, CrystEngComm 15, 8366 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    P. Ptacek, H. Schäfer, K. Kömpe, and M. Haase, Adv. Funct. Mater. 17, 3843 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    Z. Wang, J. Hao, H. Chan, W. Wong, K. Wong, and B. Li, Small 8, 1863 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    K.W. Krämer, D. Biner, G. Frei, H.U. Güdel, M.P. Hehlen, and S.R. Lüthi, Chem. Mater. 16, 1244 (2004).

    Article  Google Scholar 

  13. 13.

    L. Wang and Y. Li, Chem. Commun. 16, 2557 (2006).

    Article  Google Scholar 

  14. 14.

    Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, J. Am. Chem. Soc. 133, 17122 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    X. Huang, G. Hu, X. Li, and Q. Yu, J. Alloys Compd. 161(15), 652 (2014).

    Article  Google Scholar 

  16. 16.

    F. Shi, J. Wang, X. Zhai, D. Zhao, and W. Qin, CrystEngComm 13, 3782 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    N. Niu, P. Yang, F. He, X. Zhang, S. Gai, C. Li, and J. Lin, J. Mater. Chem. 22, 10889 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    S. Zhou, S. Jiang, X. Wei, Y. Chen, C. Duan, and M. Yin, J. Alloys Compd. 588, 654 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    C. Li, J. Yang, P. Yang, X. Zhang, H. Lian, and J. Lin, Cryst. Growth Des. 8, 923 (2008).

    CAS  Article  Google Scholar 

  20. 20.

    Y. Li, Y. Dong, T. Aidilibike, X. Liu, J. Guo, and W. Qin, RSC Adv. 7, 44531 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    M. Ding, D. Chen, D. Ma, J. Dai, Y. Li, and Z. Ji, J. Mater. Chem. C 4, 2432 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Y. Wei, F. Lu, X. Zhang, and D. Chen, Chem. Mater. 18, 5733 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    R.K. Sharma, A.-V. Mudring, and P. Ghosh, J. Lumin. 189, 44 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    D. Zhang, M. Ding, B. Dong, Y. Zhen, and Q. Chang, Ceram. Int. 45, 20307 (2019).

    CAS  Article  Google Scholar 

  25. 25.

    P. Ghosh, R.K. Sharma, Y.N. Chouryal, and A.-V. Mudring, RSC Adv. 7, 33467 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    P. Ghosh and A.-V. Mudring, Nanoscale 8, 8160 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    B. Dong, Y. Yuan, M. Ding, W. Bai, S. Wu, and Z. Ji, Nanotechnology 31, 365705 (2020).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This present work has been financially supported by the Natural Science Training Foundation of Nanjing Xiaozhuang University for financial support (Grant 2019NXY44).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Dunpu Zhang or Hui Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Zhen, Y., Chang, Q. et al. Hexagonal Sodium Lutetium Fluoride Microstructures: Facile and Large-Scale Synthesis, Growth Mechanism and Multicolour Emissions. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-021-08789-9

Download citation

Keywords

  • Microstructure
  • flux cooling method
  • luminescence
  • upconversion
  • downconversion