Room Temperature Ferromagnetism: Nonmagnetic Semiconductor Oxides and Nonmagnetic Dopants

Abstract

Advances in room temperature ferromagnetic semiconductors increase the opportunity to commercialize full spintronic devices. The manipulation of electron spin in semiconductor materials has driven significant research activity with the goal of realizing their amazing technological potential. Coupling of magnetic and semiconducting properties could lead to a new generation of information and communication devices. During the past 20 years, the intensive research on magnetic semiconductor materials has led to discovery of two interesting facts. Room temperature ferromagnetism is observed in undoped semiconductor oxides with empty or completely filled d- or f-orbitals, and nonmagnetic dopants can induce or enhance the room temperature ferromagnetism in nonmagnetic semiconductor materials. The organized review which addresses this phenomenon and covers the large number of studies on this subject is rare. In this study, we firstly review the advantages aspects of spintronic devices as well as the materials suitable for these applications. Here, we tried to provide a systematic study on defects induced by room temperature ferromagnetism in undoped semiconductor oxides as well as the impact of nonmagnetic dopants on ferromagnetism. We hope this review assist researchers in creating a complete picture to develop future research activities to access innovative technological applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Copyright Clearance Center. http://www.copyright.com/publishers/rightslink-permissions.

Fig. 4

Copyright Clearance Center. http://www.copyright.com/publishers/rightslink-permissions.

Fig. 5

Copyright Clearance Center. https://marketplace.copyright.com/rs-ui-web/mp.

Fig. 6

Copyright Clearance Center. https://marketplace.copyright.com/rs-ui-web/mp.

Fig. 7

Copyright Clearance Center. https://marketplace.copyright.com/rs-ui-web/mp.

Fig. 8

Copyright Clearance Center. https://marketplace.copyright.com/rs-ui-web/mp.

Fig. 9

Copyright Clearance Center. http://www.copyright.com/publishers/rightslink-permissions.

Fig. 10

Copyright Clearance Center. http://www.copyright.com/publishers/rightslink-permissions.

Fig. 11

Copyright Clearance Center. http://www.copyright.com/publishers/rightslink-permissions.

Fig. 12

Copyright Clearance Center. http://www.copyright.com/publishers/rightslink-permissions.

Fig. 13

Copyright Clearance Center. http://www.copyright.com/publishers/rightslink-permissions.

Fig. 14

Copyright Clearance Center. http://www.copyright.com/publishers/rightslink-permissions.

Fig. 15

Copyright Clearance Center. http://www.copyright.com/publishers/rightslink-permissions.

References

  1. 1.

    D.D. Awschalom, D. Loss, and N. Samarth, Semiconductor spintronics and quantum computation Springer, Verlag Berlin Heidelberg, 2002

    Google Scholar 

  2. 2.

    J. Orton, semiconductors and the information revolution. (Elsevier, 2009)

  3. 3.

    X. Lin, W. Yang, K.L. Wang, and W. Zhao, X. Lin, W. Yang, K.L. Wang, and W. Zhao, Nature Electronics, 2019, 2, p 274.

    CAS  Article  Google Scholar 

  4. 4.

    V. K. Joshi, Engineering Science and Technology, an International Journal 19, 1503 (2016).

  5. 5.

    S. L. Harris and D. M. Harris, in Digital Design and Computer Architecture, ed. by M. Kaufmann (Elsevier, 2016), p. 238.

  6. 6.

    Y. Zhang, W. Zhao, J.-O. Klein, W. Kang, D. Querlioz, Y. Zhang, D. Ravelosona and C. Chappert, in IEEE conferences Xplore (2014), p. 1. https://doi.org/10.7873/DATE.2014.316

  7. 7.

    S.E. Thompson, and S. Parthasarathy, S.E. Thompson, and S. Parthasarathy, Mater. Today, 2006, 9, p 20.

    CAS  Article  Google Scholar 

  8. 8.

    M. Johnson, in Magnetoelectronics, ed. by M. Johnson (Elsevier, 2004) p. 1.

  9. 9.

    T.B. Hook, T.B. Hook, Joule, 2018, 2, p 1.

    Article  Google Scholar 

  10. 10.

    T. Hiramoto, T. Hiramoto, Nature Electronics, 2019, 2, p 557.

    Article  Google Scholar 

  11. 11.

    L.B. Chandrasekar, K. Gnanasekar, and M. Karunakaran, Superlattices Microstruct., 2019, 136, p 106322.

    CAS  Article  Google Scholar 

  12. 12.

    W. Liu, P.K.J. Wong, and Y. Xu, W. Liu, P.K.J. Wong, and Y. Xu, Prog. Mater Sci., 2019, 99, p 27.

    CAS  Article  Google Scholar 

  13. 13.

    T. Ryhänen, M. A. Uusitalo, O. Ikkala and A. Kärkkäinen, Nanotechnologies for future mobile devices, (Cambridge University Press, 2010).

  14. 14.

    T. Yu-Feng, H. Shu-Jun, Y. Shi-Shen, and M. Liang-Mo, Chin. Phys. B, 2013, 22, p 088505.

    Article  CAS  Google Scholar 

  15. 15.

    Y.B. Xu, E. Ahmad, J.S. Claydon, Y.X. Lu, S.S.A. Hassan, I.G. Will, and B. Cantor, J. Magn. Magn. Mater., 2006, 304, p 69.

    CAS  Article  Google Scholar 

  16. 16.

    T. Dietl, T. Dietl, Nat. Mater., 2010, 9, p 965.

    CAS  Article  Google Scholar 

  17. 17.

    J. A. Gaj, in Comprehensive Semiconductor Science and Technology, ed. by P. Bhattacharya, H. Kamimura and R. Fornari (Elsevier, 2011), p. 95.

  18. 18.

    A. Gupta, R. Zhang, P. Kumar, V. Kumar, and A. Kumar, Magnetochemistry, 2020, 6, p 15.

    CAS  Article  Google Scholar 

  19. 19.

    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science, 2000, 287, p 1019.

    CAS  Article  Google Scholar 

  20. 20.

    Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Science, 2001, 291, p 854.

    CAS  Article  Google Scholar 

  21. 21.

    K. Ueda, H. Tabata, and T. Kawai, K, Appl. Phys. Lett., 2001, 79, p 988.

    CAS  Article  Google Scholar 

  22. 22.

    H. Saeki, H. Tabata, and T. Kawai, Solid State Commun., 2001, 120, p 439.

    CAS  Article  Google Scholar 

  23. 23.

    S.-J. Han, J.W. Song, C.-H. Yang, S.H. Park, J.-H. Park, and Y.H. Jeonga, Appl. Phys. Lett., 2002, 81, p 4212.

    CAS  Article  Google Scholar 

  24. 24.

    Y.M. Cho, and W.K. Choo, Appl. Phys. Lett., 2002, 80, p 3358.

    CAS  Article  Google Scholar 

  25. 25.

    W. Prellier, A. Fouchet, and B. Mercey, J. Phys.: Condens. Matter, 2003, 15, p R1583.

    CAS  Google Scholar 

  26. 26.

    S.A. Chambers, T.C. Droubay, C.M. Wang, K.M. Rosso, S.M. Heald, D.A. Schwartz, K.R. Kittilstved, and D.R. Gamelin, Mater. Today, 2006, 9, p 28.

    CAS  Article  Google Scholar 

  27. 27.

    Y. Li, J. Li, Z. Yu, W. Li, M. Zhu, H. Jin, Y. Liu, Y. Li, and K. Skotnicova, Ceram. Int., 2019, 45, p 19583.

    CAS  Article  Google Scholar 

  28. 28.

    A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C.N.R. Rao, Physical Review B, 2006, 74, p 161306(R).

    Article  CAS  Google Scholar 

  29. 29.

    J.M.D. Coey, J.M.D. Coey, Nat. Mater., 2019, 18, p 652.

    CAS  Article  Google Scholar 

  30. 30.

    R.J. Green, D.W. Boukhvalov, E.Z. Kurmaev, L.D. Finkelstein, H.W. Ho, K.B. Ruan, L. Wang, and A. Moewes, Phys. Rev. B, 2012, 86, p 115212.

    Article  CAS  Google Scholar 

  31. 31.

    S.M. Yakout, H.A. Mousa, H.T. Handal, and W. Sharmoukh, J. Solid State Chem., 2020, 281, p 121028.

    CAS  Article  Google Scholar 

  32. 32.

    Y. Liu, C. Zeng, J. Zhong, J. Ding, Z.M. Wang, and Z. Liu, Nano-Micro Lett., 2020, 12, p 93.

    CAS  Article  Google Scholar 

  33. 33.

    H. Li, S. Ruan, and Y.-J. Zeng, Adv. Mater., 2019, 31, p 1900065.

    Article  CAS  Google Scholar 

  34. 34.

    E. C. Ahn, npj 2D Materials and Applications 4, 17 (2020).

  35. 35.

    M. Venkatesan, C.B. Fitzgerald, and J.M.D. Coey, Nature, 2004, 430, p 630.

    CAS  Article  Google Scholar 

  36. 36.

    D.B. Buchholz, and R.P.H. Chang, Appl. Phys. Lett., 2005, 87, p 082504.

    Article  CAS  Google Scholar 

  37. 37.

    J.M.D. Coey, M. Venkatesan, P. Stamenov, C.B. Fitzgerald, and L.S. Dorneles, Physical Review B, 2005, 72, p 024450.

    Article  CAS  Google Scholar 

  38. 38.

    N.H. Hong, J. Sakai, N. Poirot, and V. Brizé, Physical Review B, 2006, 73, p 132404.

    Article  CAS  Google Scholar 

  39. 39.

    H.-M. Xiao, L.-P. Zhu, X.-M. Liu, and S.-Y. Fu, Solid State Commun., 2007, 141, p 431.

    CAS  Article  Google Scholar 

  40. 40.

    A.K. Rumaiz, B. Ali, A. Ceylan, M. Boggs, T. Beebe, and S.I. Shah, Solid State Commun., 2007, 144, p 334.

    CAS  Article  Google Scholar 

  41. 41.

    S.D. Yoon, Y. Chen, A. Yang, T.L. Goodrich, X. Zuo, K. Ziemer, C. Vittoria, and V.G. Harris, J. Magn. Magn. Mater., 2007, 309, p 171.

    CAS  Article  Google Scholar 

  42. 42.

    D. Sanyal, M. Chakrabarti, T.K. Roy, and A. Chakrabarti, Phys. Lett. A, 2007, 371, p 482.

    CAS  Article  Google Scholar 

  43. 43.

    C. Sudakar, P. Kharel, R. Suryanarayanan, J.S. Thakur, V.M. Naik, R. Naik, and G. Lawes, J. Magn. Magn. Mater., 2008, 320, p L31.

    CAS  Article  Google Scholar 

  44. 44.

    A. Hassini, J. Sakai, J.S. Lopez, and N.H. Hong, Phys. Lett. A, 2008, 372, p 3299.

    CAS  Article  Google Scholar 

  45. 45.

    A. Sundaresan, and C.N.R. Rao, Nano Today, 2009, 4, p 96.

    CAS  Article  Google Scholar 

  46. 46.

    Z. Li, W. Zhong, X. Li, H. Zeng, G. Wang, W. Wang, Z. Yang, and Y. Zhang, J. Mater. Chem. C, 2013, 1, p 6807.

    CAS  Article  Google Scholar 

  47. 47.

    Q. Xu, D. Gao, J. Zhang, Z. Yang, Z. Zhang, J. Rao, and D. Xue, Appl. Phys. A, 2014, 116, p 1293.

    CAS  Article  Google Scholar 

  48. 48.

    D. Gao, J. Li, Z. Li, Z. Zhang, J. Zhang, H. Shi, and D. Xue, J. Phys. Chem. C, 2010, 114, p 11703.

    CAS  Article  Google Scholar 

  49. 49.

    Z. Zhu, D. Gao, G. Yang, J. Zhang, J. Zhang, Z. Shi, F. Xu, H. Gao, and D. Xue, EPL, 2012, 97, p 17005.

    Article  CAS  Google Scholar 

  50. 50.

    J. Zhang, D. Gao, M. Si, Z. Zhu, G. Yang, Z. Shia, and D. Xue, J. Mater. Chem. C, 2013, 1, p 6216.

    CAS  Article  Google Scholar 

  51. 51.

    D. Gao, Z. Zhang, Y. Li, B. Xia, S. Shi, and D. Xue, Chem. Commun., 2015, 51, p 1151.

    CAS  Article  Google Scholar 

  52. 52.

    C. Sudakar, K. Padmanabhan, R. Naik, G. Lawes, B.J. Kirby, S. Kumar, and V.M. Naik, Appl. Phys. Lett., 2008, 93, p 042502.

    Article  CAS  Google Scholar 

  53. 53.

    W. Wang, L. Xu, R. Zhang, J. Xu, F. Xian, J. Su, and F. Yang, Chem. Phys. Lett., 2019, 721, p 57.

    CAS  Article  Google Scholar 

  54. 54.

    Q. Xu, Z. Wen, L. Xu, J. Gao, D. Wu, K. Shen, T. Qiu, S. Tang, and M. Xu, Phys. B, 2011, 406, p 19.

    CAS  Article  Google Scholar 

  55. 55.

    X. Bie, C. Wang, H. Ehrenberg, Y. Wei, G. Chen, X. Meng, G. Zou, and F. Du, Solid State Sci., 2010, 12, p 1364.

    CAS  Article  Google Scholar 

  56. 56.

    H. Zhang, W. Li, G. Qin, H. Ruan, D. Wang, J. Wang, C. Kong, F. Wu, and L. Fang, Solid State Commun., 2019, 292, p 36.

    CAS  Article  Google Scholar 

  57. 57.

    X. Hou, H. Liu, H. Sun, L. Liu, and X. Jia, Mater. Sci. Eng., B, 2015, 200, p 22.

    CAS  Article  Google Scholar 

  58. 58.

    A.K. Das, M. Kar, and A. Srinivasan, Phys. B, 2014, 448, p 112.

    Article  CAS  Google Scholar 

  59. 59.

    G. Jayalakshmi, N. Gopalakrishnan, and T. Balasubramanian, J. Alloy. Compd., 2013, 551, p 667.

    CAS  Article  Google Scholar 

  60. 60.

    S. Kumar, Y.J. Kim, B.H. Koo, S. Gautam, K.H. Chae, R. Kumar, and C.G. Lee, Mater. Lett., 2009, 63, p 194.

    CAS  Article  Google Scholar 

  61. 61.

    S.-W. Kim, S. Lee, A.N.S. Saqib, Y.H. Lee, and M.-H. Jung, Curr. Appl. Phys., 2017, 17, p 181.

    Article  Google Scholar 

  62. 62.

    B. Kisan, and P. Alagarsamy, Phys. B, 2014, 448, p 115.

    CAS  Article  Google Scholar 

  63. 63.

    B.B. Straumal, A.A. Mazilkin, S.G. Protasova, A.A. Myatiev, P.B. Straumal, E. Goering, and B. Baretzky, Thin Solid Films, 2011, 520, p 1192.

    CAS  Article  Google Scholar 

  64. 64.

    C. Zhao, Y. Huang, and J.T. Abiade, Mater. Lett., 2012, 85, p 164.

    CAS  Article  Google Scholar 

  65. 65.

    H. Liu, G. P. Li, D. J. E, N. N. Xu, Q. L. Lin, X. D. Gao and C. L. Wang, Journal of Superconductivity and Novel Magnetism 33, 1535 (2020).

  66. 66.

    X. Liu, J. Bu, X. Ren, B. Cheng, J. Xie, L. Chen, C. Gao, L. Liu, H. Zhang, G. Zhou, H. Qin, and J. Hu, J. Magn. Magn. Mater., 2019, 475, p 368.

    CAS  Article  Google Scholar 

  67. 67.

    J. Li, G. Bai, Y. Jiang, Y. Du, C. Wu, and M. Yan, J. Magn. Magn. Mater., 2017, 426, p 545.

    CAS  Article  Google Scholar 

  68. 68.

    K. Sakthiraj, M. Hema, and K.B. Kumar, Appl. Surf. Sci., 2017, 420, p 145.

    CAS  Article  Google Scholar 

  69. 69.

    V.S. Jahnavi, S.K. Tripathy, and A.V.N.R. Rao, Phys. B, 2019, 565, p 61.

    CAS  Article  Google Scholar 

  70. 70.

    T. Wu, H. Sun, X. Hou, L. Liu, H. Zhang, and J. Zhang, Microporous Mesoporous Mater., 2014, 190, p 63.

    CAS  Article  Google Scholar 

  71. 71.

    A.S. Bolokang, F.R. Cummings, B.P. Dhonge, H.M.I. Abdallah, T. Moyo, H.C. Swart, C.J. Arendse, T.F.G. Muller, and D.E. Motaung, Appl. Surf. Sci., 2015, 331, p 362.

    CAS  Article  Google Scholar 

  72. 72.

    D. Wang, Y. Qiu, W. Li, H. Zhang, G. Qin, H. Ruan, L. Ye, C. Kong, and L. Fang, J. Mater. Sci.: Mater. Electron., 2019, 30, p 11086.

    CAS  Google Scholar 

  73. 73.

    X. Zhang, W. Zhang, X. Zhang, X. Xu, F. Meng, and C.C. Tang, X. Zhang, W. Zhang, X. Zhang, X. Xu, F. Meng, and C.C. Tang, Advances in Condensed Matter Physics, 2014, 2014, p 806327.

    Google Scholar 

  74. 74.

    D. Gao, Z. Zhang, J. Fu, Y. Xu, J. Qi, and D. Xue, J. Appl. Phys., 2009, 105, p 113928.

    Article  CAS  Google Scholar 

  75. 75.

    D. Mishra, C.S. Rout, M. Mishra, and A.K. Pattanaik, Integrated Ferroelectrics, 2017, 184, p 124.

    CAS  Article  Google Scholar 

  76. 76.

    S. Phokha, E. Swatsitang, and S. Maensiri, Electron. Mater. Lett., 2015, 11, p 1012.

    CAS  Article  Google Scholar 

  77. 77.

    D. Gao, G. Yang, J. Li, J. Zhang, J. Zhang, and D. Xue, J. Phys. Chem. C, 2010, 114, p 18347.

    CAS  Article  Google Scholar 

  78. 78.

    J.A. Souza, D. Criado, A. Zuniga, V.N. Miranda, F.E.N. Ramirez, S.H. Masunaga, and R.F. Jardim, J. Appl. Phys., 2013, 114, p 173907.

    Article  CAS  Google Scholar 

  79. 79.

    D. Gao, J. Zhang, J. Zhu, J. Qi, Z. Zhang, W. Sui, H. Shi, and D. Xue, Nanoscale Res Lett, 2010, 5, p 769.

    CAS  Article  Google Scholar 

  80. 80.

    S. Shi, D. Gao, B. Xia, and D. Xue, J. Phys. D: Appl. Phys., 2016, 49, p 055003.

    Article  CAS  Google Scholar 

  81. 81.

    S. Duhalde, M. F. Vignolo, F. Golmar, C. Chiliotte, C. E. Rodríguez Torres, L. A. Errico, A. F. Cabrera, M. Rentería, F. H. Sánchez and M. Weissmann, Physical Review B 72, 161313(R) (2005).

  82. 82.

    T.S. Herng, S.P. Lau, S.F. Yu, H.Y. Yang, X.H. Ji, J.S. Chen, N. Yasui, and H. Inaba, J. Appl. Phys., 2006, 99, p 086101.

    Article  CAS  Google Scholar 

  83. 83.

    D.L. Hou, X.J. Ye, X.Y. Zhao, H.J. Meng, H.J. Zhou, X.L. Li, and C.M. Zhen, J. Appl. Phys., 2007, 102, p 033905.

    Article  CAS  Google Scholar 

  84. 84.

    D. Gao, Y. Xu, Z. Zhang, H. Gao, and D. Xuea, J. Appl. Phys., 2009, 105, p 063903.

    Article  CAS  Google Scholar 

  85. 85.

    S.K. Alla, P. Kollu, R.K. Mandala, and N.K. Prasad, Ceram. Int., 2018, 44, p 7221.

    CAS  Article  Google Scholar 

  86. 86.

    Y. Chen, X. Xu, X. Li, and G. Zhang, Appl. Surf. Sci., 2020, 506, p 144905.

    CAS  Article  Google Scholar 

  87. 87.

    M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, and J.M.D. Coey, Phys. Rev. Lett., 2004, 93, p 177206.

    CAS  Article  Google Scholar 

  88. 88.

    K. Sakthiraj, and K. Balachandrakumar, J. Magn. Magn. Mater., 2015, 395, p 205.

    CAS  Article  Google Scholar 

  89. 89.

    R.N. Bhowmik, P. Mitra, R.J. Choudhury, and V.R. Reddy, Appl. Surf. Sci., 2020, 501, p 144224.

    CAS  Article  Google Scholar 

  90. 90.

    Z.D. Dohčević-Mitrović, N. Paunović, B. Matović, P. Osiceanu, R. Scurtu, S. Aškrabić, and M. Radović, Ceram. Int., 2015, 41, p 6970.

    Article  CAS  Google Scholar 

  91. 91.

    W. Lee, S.-Y. Chen, Y.-S. Chen, C.-L. Dong, H.-J. Lin, C.-T. Chen, and A. Gloter, J. Phys. Chem. C, 2014, 118, p 26359.

    CAS  Article  Google Scholar 

  92. 92.

    X. Ma, P. Lu, and P. Wu, Ceram. Int., 2018, 44, p 15989.

    CAS  Article  Google Scholar 

  93. 93.

    G. Murtaza, R. Ahmad, M. S. Rashid, M. Hassan, A. Hussnain, M. A. Khan, M. E. ul Haq, M. A. Shafique and S. Riaz, Current Applied Physics 14, 176 (2014).

  94. 94.

    X. Liu, J. Iqbal, Z. Wu, B. He, and R. Yu, J. Phys. Chem. C, 2010, 114, p 4790.

    CAS  Article  Google Scholar 

  95. 95.

    F. Paraguay-Delgado, F.C. Vasquez, J.T. Holguín-Momaca, C.R. Santillán-Rodríguez, J.A. Matutes-Aquino, and S.F. Olive-Méndez, J. Magn. Magn. Mater., 2019, 476, p 183.

    CAS  Article  Google Scholar 

  96. 96.

    M. Debbichi, M. Souissi, A. Fouzri, G. Schmerber, M. Said, and M. Alouani, J. Alloy. Compd., 2014, 598, p 120.

    CAS  Article  Google Scholar 

  97. 97.

    M. Souissi, A. Fouzri, and G. Schmerber, Solid State Commun., 2015, 218, p 40.

    CAS  Article  Google Scholar 

  98. 98.

    S. Ramya, R. Gobi, N. Shanmugam, G. Viruthagiri, and N. Kannadasan, J Mater Sci: Mater Electron, 2016, 27, p 40.

    CAS  Google Scholar 

  99. 99.

    Q. Xu, Z.-J. Wang, Z.-J. Chang, J.-J. Liu, Y.-X. Ren, and H.-Y. Sun, Chem. Phys. Lett., 2016, 666, p 28.

    CAS  Article  Google Scholar 

  100. 100.

    N. Ali, A.R. Vijaya, Z.A. Khan, K. Tarafder, A. Kumar, M.K. Wadhwa, B. Singh, and S. Ghosh, Scientific Reports, 2019, 9, p 20039.

    CAS  Article  Google Scholar 

  101. 101.

    Y. Yang, W. Zhou, Y. Liang, L. Liu, and P. Wu, J. Cryst. Growth, 2015, 430, p 75.

    CAS  Article  Google Scholar 

  102. 102.

    X. Lu, Y. Liu, X. Si, Y. Shen, W. Yu, W. Wang, X. Luo, and T. Zhou, Opt. Mater., 2016, 62, p 335.

    CAS  Article  Google Scholar 

  103. 103.

    K.W. Liu, M. Sakurai, and M. Aono, J. Appl. Phys., 2010, 108, p 043516.

    Article  CAS  Google Scholar 

  104. 104.

    S. Singh, N. Jahan, A. Khanna, G. Singh, Lotey and N. K. Verma, Chalcogenide Letters 9, 73 (2012).

  105. 105.

    J. Kazmi, P.C. Ooi, B.T. Goh, M.K. Lee, M.F.M.R. Wee, S.S.A. Karim, S.R.A. Razad, and M.A. Mohamed, RSC Adv., 2020, 10, p 23297.

    CAS  Article  Google Scholar 

  106. 106.

    J. Lee, G.S. Nagarajan, Y. Shon, Y. Kwon, T.W. Kang, D.Y. Kim, H. Kim, H. Im, C.-S. Park, and E.K. Kim, AIP Adv., 2017, 7, p 085114.

    Article  CAS  Google Scholar 

  107. 107.

    T. Li, H. Fan, J. Yi, T.S. Herng, Y. Ma, X. Huang, J. Xue, and J. Ding, J. Mater. Chem., 2010, 20, p 5756.

    CAS  Article  Google Scholar 

  108. 108.

    C.G. Jin, T. Yu, Y. Yang, Z.F. Wu, L.J. Zhuge, X.M. Wu, and Z.C. Feng, Mater. Chem. Phys., 2013, 139, p 506.

    CAS  Article  Google Scholar 

  109. 109.

    W. Wan, J. Huang, L. Zhu, L. Hu, Z. Wen, L. Sun, and Z. Ye, CrystEngComm, 2013, 15, p 7887.

    CAS  Article  Google Scholar 

  110. 110.

    B. Babu, T. Aswani, G. Thirumala Rao, R. Joyce Stella, B. Jayaraja and R. V. S. S. N. Ravikumar, Journal of Magnetism and Magnetic Materials 355, 76 (2014).

  111. 111.

    D. Li, D.K. Li, H.Z. Wu, F. Liang, W. Xie, C.W. Zou, and L.X. Shao, J. Alloy. Compd., 2014, 591, p 80.

    CAS  Article  Google Scholar 

  112. 112.

    L. Zhang, L. Zhu, L. Hu, Y. Zeng, and Z. Ye, L. Zhang, J. Alloy. Compd., 2016, 684, p 132.

    CAS  Article  Google Scholar 

  113. 113.

    M. Zhu, Z. Zhang, M. Zhong, M. Tariq, Y. Li, W. Li, H. Jin, K. Skotnicova, and Y. Li, Ceram. Int., 2017, 43, p 3166.

    CAS  Article  Google Scholar 

  114. 114.

    Y. Wang, J. Hao, G. Gong, R. Chen, and Y. Su, Phys. B, 2019, 564, p 22.

    CAS  Article  Google Scholar 

  115. 115.

    P. Chetri, and A. Choudhury, J. Alloy. Compd., 2015, 627, p 261.

    CAS  Article  Google Scholar 

  116. 116.

    A. Johari, S. Srivastav, M. Sharm, and M.C. Bhatnagar, J. Magn. Magn. Mater., 2014, 362, p 1.

    CAS  Article  Google Scholar 

  117. 117.

    B. Choudhury, A. Choudhury, and D. Borah, J. Alloy. Compd., 2015, 646, p 692.

    CAS  Article  Google Scholar 

  118. 118.

    Z. Zhou, H. Wang, Z. Zou, M. Du, J. Guo, and Z. Yang, Mater. Res. Bull., 2017, 86, p 287.

    CAS  Article  Google Scholar 

  119. 119.

    F.A. Al-Agel, E. Al-Arfaj, A.A. Al-Ghamdi, B.D. Stein, Y. Losovyj, L.M. Bronstein, F.S. Shokr, and W.E. Mahmoud, Ceram. Int., 2015, 41, p 1115.

    CAS  Article  Google Scholar 

  120. 120.

    D. Li, D. Li, and C. Zou, J. Alloy. Compd., 2015, 650, p 912.

    CAS  Article  Google Scholar 

  121. 121.

    R.O. Ijeh, A.C. Nwanya, A.C. Nkele, I.G. Madiba, Z. Khumalo, A.K.H. Bashir, R.U. Osuji, M. Maaza, and F.I. Ezema, Physica E, 2019, 113, p 233.

    CAS  Article  Google Scholar 

  122. 122.

    E.T. Selvi, and S.M. Sundar, Appl. Phys. A, 2017, 123, p 383.

    Article  CAS  Google Scholar 

  123. 123.

    J. Li, Y. Li, S. Li, M. Zhu, J. Zhang, Y. Li, Y. He, and W. Li, Ceram. Int., 2020, 46, p 18639.

    CAS  Article  Google Scholar 

  124. 124.

    J. Wang, W. Zhou, and P. Wu, J Nanopart Res, 2014, 16, p 2573.

    Article  CAS  Google Scholar 

  125. 125.

    T. Yingsamphancharoen, P. Nakarungsee, T.S. Herng, J. Ding, I.M. Tang, and S. Thongmee, J. Magn. Magn. Mater., 2016, 419, p 274.

    CAS  Article  Google Scholar 

  126. 126.

    H.K. Mallick, Y. Zhang, J. Pradhan, M.P.K. Sahoo, and A.K. Pattanaik, J. Alloy. Compd., 2021, 854, p 156067.

    CAS  Article  Google Scholar 

  127. 127.

    A.S. Ganeshraja, S. Thirumurugan, K. Rajkumar, K. Zhu, Y. Wang, K. Anbalagan, and J. Wang, RSC Adv., 2016, 6, p 409.

    CAS  Article  Google Scholar 

  128. 128.

    M.H. Farooq, R. Hussain, M.Z. Iqbal, M.W. Shah, U.A. Rana, and S.U.-D. Khan, J. Nanosci. Nanotechnol., 2016, 16, p 898.

    Article  CAS  Google Scholar 

  129. 129.

    K.C. Kumar, S. Kaleemulla, C. Krishnamoorthi, N.M. Rao, and G.V. Rao, J. Supercond. Novel Magn., 2019, 32, p 1725.

    CAS  Article  Google Scholar 

  130. 130.

    K. Sedeek, E. Abdeltwab, H. Hantour, and N. Makram, K. Sedeek, E. Abdeltwab, H. Hantour, and N. Makram, J. Supercond. Novel Magn., 2020, 33, p 445.

    CAS  Article  Google Scholar 

  131. 131.

    S. Zhou, L. Liu, S. Lou, Y. Wang, X. Chen, H. Yuan, Y. Hao, R. Yuan, and N. Li, Appl Phys A, 2011, 102, p 367.

    CAS  Article  Google Scholar 

  132. 132.

    S. Chawla, K. Jayanthi, and R.K. Kotnala, Physical Review B, 2009, 79, p 125204.

    Article  CAS  Google Scholar 

  133. 133.

    J.B. Yi, C.C. Lim, G.Z. Xing, H.M. Fan, L.H. Van, S.L. Huang, K.S. Yang, X.L. Huang, X.B. Qin, B.Y. Wang, T. Wu, L. Wang, H.T. Zhang, X.Y. Gao, T. Liu, A.T.S. Wee, Y.P. Feng, and J. Ding, Phys. Rev. Lett., 2010, 104, p 137201.

    CAS  Article  Google Scholar 

  134. 134.

    C. Y. Kung, C. C. Lin, S. L. Young, Lance Horng, Y. T. Shih, M. C. Kao, H. Z. Chen, H. H. Lin, J. H. Lin, S. J. Wang and J. M. Li, Thin Solid Films 529, 181 (2013).

  135. 135.

    H. Cao, P. Xing, W. Zhou, D. Yao, and P. Wu, J. Magn. Magn. Mater., 2018, 451, p 609.

    CAS  Article  Google Scholar 

  136. 136.

    B.K. Pandey, A.K. Shahi, J. Shah, R.K. Kotnala, and R. Gopal, J. Alloy. Compd., 2020, 823, p 153710.

    CAS  Article  Google Scholar 

  137. 137.

    J. Wang, D. Zhou, Y. Li, and P. Wu, Vacuum, 2017, 141, p 62.

    CAS  Article  Google Scholar 

  138. 138.

    W. Zhou, X. Tang, P. Xing, W. Liu, and P. Wu, Phys. Lett. A, 2012, 376, p 203.

    CAS  Article  Google Scholar 

  139. 139.

    Y. Huang, W. Zhou, and P. Wu, Solid State Commun., 2014, 183, p 31.

    CAS  Article  Google Scholar 

  140. 140.

    U.K. Panigrahi, V. Sathe, P.D. Babu, A. Mitra, and P. Mallick, Nano Express, 2020, 1, p 020009.

    Article  Google Scholar 

  141. 141.

    P. Wu, B. Zhou, and W. Zhou, Appl. Phys. Lett., 2012, 100, p 182405.

    Article  CAS  Google Scholar 

  142. 142.

    Z. Quan, X. Liu, Y. Qi, Z. Song, S. Qi, G. Zhou, and X. Xu, Appl. Surf. Sci., 2017, 399, p 751.

    CAS  Article  Google Scholar 

  143. 143.

    M.C. Dimri, H. Khanduri, H. Kooskora, M. Kodu, R. Jaaniso, I. Heinmaa, A. Mere, J. Krustok, and R. Stern, J. Phys. D: Appl. Phys., 2012, 45, p 475003.

    Article  CAS  Google Scholar 

  144. 144.

    N. Rajamanickam, S.S. Kanamni, S. Rajashabala, and K. Ramachandran, Mater. Lett., 2015, 161, p 520.

    CAS  Article  Google Scholar 

  145. 145.

    N. Wang, W. Zhou, Y. Liang, W. Cui, and P. Wu, J Mater Sci: Mater Electron, 2015, 26, p 7751.

    CAS  Google Scholar 

  146. 146.

    J. Wang, W. Zhou, and P. Wu, Appl. Surf. Sci., 2014, 314, p 188.

    CAS  Article  Google Scholar 

  147. 147.

    S. Akbar, S.K. Hasanain, O. Ivashenko, M.V. Dutka, N.Z. Ali, G.R. Blake, JTh.M. De Hosson, and P. Rudolf, RSC Adv., 2020, 10, p 26342.

    CAS  Article  Google Scholar 

  148. 148.

    S.U. Awan, S.K. Hasanain, D.H. Anjum, M.S. Awan, and S.A. Shah, S.U. Awan, S.K. Hasanain, D.H. Anjum, M.S. Awan, and S.A. Shah, J. Appl. Phys., 2014, 116, p 164109.

    Article  CAS  Google Scholar 

  149. 149.

    S.U. Awan, S.K. Hasanain, M.F. Bertino, and G.H. Jaffari, J. Appl. Phys., 2012, 112, p 103924.

    Article  CAS  Google Scholar 

  150. 150.

    R. Vettumperumal, S. Kalyanaraman, B. Santoshkumar, and R. Thangavel, Mater. Res. Bull., 2014, 50, p 7.

    CAS  Article  Google Scholar 

  151. 151.

    S. Ghosh, G.G. Khan, K. Mandal, S. Thap, and P.M.G. Nambissan, J. Alloy. Compd., 2014, 590, p 396.

    CAS  Article  Google Scholar 

  152. 152.

    S. Tanyawong, I. Tang, T.S. Herng, and S. Thongmee, J. Supercond. Novel Magn., 2020, 33, p 285.

    Article  CAS  Google Scholar 

  153. 153.

    M.H. Farooq, H.L. Yang, M.Y. Rafique, and M.Z. Iqbal, Journal of Spintronics and Magnetic Nanomaterials, 2012, 1, p 122.

    CAS  Article  Google Scholar 

  154. 154.

    R. Krithiga, S. Sankar, and V. Arunkumar, J Supercond Nov Magn, 2016, 29, p 245.

    CAS  Article  Google Scholar 

  155. 155.

    S. Ghosh, G.G. Khan, B. Das, and K. Mandal, J. Appl. Phys., 2011, 109, p 123927.

    Article  CAS  Google Scholar 

  156. 156.

    W.U. Kai, X.U. Xiaoguang, Y. Hailing, Z. Jianli, M. Jun, and J. Yong, Rare Met., 2012, 31, p 27.

    Article  CAS  Google Scholar 

  157. 157.

    J. Piao, L.-T. Tseng, K. Suzuki, and J. Yi, Functional Materials Letters, 2016, 9, p 1650039.

    CAS  Article  Google Scholar 

  158. 158.

    S. Ghosh, G.G. Khan, S. Varma, and K. Mandal, Mater. Interfaces, 2013, 5, p 2455.

    CAS  Article  Google Scholar 

  159. 159.

    Y. Wang, X. Luo, L.-T. Tseng, Z. Ao, T. Li, G. Xing, N. Bao, K. Suzukiis, J. Ding, S. Li, and J. Yi, Chem. Mater., 2015, 27, p 1285.

    CAS  Article  Google Scholar 

  160. 160.

    A.H. Maru, H. Kamble, A. Kalarikkal, R. Shah, P.B. Bhanuse, and N. Pradhan, International Journal of Chemical and Physical Sciences, 2015, 5, p 44.

    Google Scholar 

  161. 161.

    T. Ali, A. Ahmed, M.N. Siddique, and P. Tripathi, Optik, 2020, 223, p 165340.

    CAS  Article  Google Scholar 

  162. 162.

    K. Yang, Y. Dai, B. Huang, and M.-H. Whangbo, Appl. Phys. Lett., 2008, 93, p 132507.

    Article  CAS  Google Scholar 

  163. 163.

    X.J. Ye, W. Zhong, M.H. Xu, X.S. Qi, C.T. Au, and Y.W. Du, Phys. Lett. A, 2009, 373, p 3684.

    CAS  Article  Google Scholar 

  164. 164.

    A. Ablat, R. Wu, M. Mamat, Y. Ghupur, A. Aimidula, M.A. Bake, T. Gholam, J. Wang, H. Qian, R. Wu, and K. Ibrahim, Solid State Commun., 2016, 243, p 7.

    CAS  Article  Google Scholar 

  165. 165.

    X.J. Ye, C.S. Liu, W. Zhong, H.A. Song, C.T. Au, and Y.W. Du, Phys. Lett. A, 2010, 374, p 496.

    CAS  Article  Google Scholar 

  166. 166.

    S. Akbar, S.K. Hasanain, M. Abbas, S. Ozcan, B. Ali, and S.I. Shah, Solid State Commun., 2011, 151, p 17.

    CAS  Article  Google Scholar 

  167. 167.

    C.S. Wei, S.P. Lau, M. Tanemura, M. Subramanian, and Y. Akaike, Appl. Surf. Sci., 2012, 258, p 5486.

    CAS  Article  Google Scholar 

  168. 168.

    N.D. Dung, C.T. Son, P.V. Loc, N.H. Cuong, P.T. Kien, P.T. Huy, and N.N. Ha, J. Alloy. Compd., 2016, 668, p 87.

    Article  CAS  Google Scholar 

  169. 169.

    J.J. Beltrán, C.A. Barrero, and A. Punnoose, Phys. Chem. Chem. Phys., 2019, 21, p 8808.

    Article  Google Scholar 

  170. 170.

    K.B. Ruan, H.W. Ho, R.A. Khan, P. Ren, W.D. Song, A.C.H. Huan, and L. Wang, Solid State Commun., 2010, 150, p 2158.

    CAS  Article  Google Scholar 

  171. 171.

    R.A. Khan, A.S. Bhatti, and R. Kaibin, J. Magn. Magn. Mater., 2011, 323, p 2841.

    CAS  Article  Google Scholar 

  172. 172.

    L. Shen, Y. An, D. Cao, Z. Wu, and J. Liu, J. Phys. Chem. C, 2017, 121, p 26499.

    Article  CAS  Google Scholar 

  173. 173.

    N.N. Bao, H.M. Fan, J. Ding, and J.B. Yi, J. Appl. Phys., 2011, 109, p 07C302.

    Article  CAS  Google Scholar 

  174. 174.

    C. Gómez-Polo, S. Larumbe, and J.M. Pastor, J. Appl. Phys., 2013, 113, p 17B511.

    Article  CAS  Google Scholar 

  175. 175.

    A. Ablat, R. Wu, J. Jian, X. Jiang, M. Mamat, J. Li, and H. Ren, Mater. Lett., 2014, 132, p 86.

    CAS  Article  Google Scholar 

  176. 176.

    C. Gómez-Polo, S. Larumbe, and M. Monge, J. Alloy. Compd., 2014, 612, p 450.

    Article  CAS  Google Scholar 

  177. 177.

    C.-C. Wang, C.-M. Fu, and Y.-M. Hu, Surf. Coat. Technol., 2013, 231, p 307.

    CAS  Article  Google Scholar 

  178. 178.

    C.-F. Yu, S.-J. Sun, H.-S. Hsu, and H. Chou, Phys. Lett. A, 2014, 378, p 1965.

    CAS  Article  Google Scholar 

  179. 179.

    B. Zhou, S. Dong, H. Zhao, Y. Liu, and P. Wu, J. Magn. Magn. Mater., 2014, 362, p 14.

    CAS  Article  Google Scholar 

  180. 180.

    Q. Li, B. Ye, Y. Hao, J. Liu, J. Zhang, L. Zhang, W. Kong, H. Weng, and B. Ye, Chem. Phys. Lett., 2013, 556, p 237.

    CAS  Article  Google Scholar 

  181. 181.

    S. Yılmaza, J. Nisar, Y. Atasoy, E. McGlynn, R. Ahuja, M. Parlak, and E. Bacaksız, Ceram. Int., 2013, 39, p 4609.

    Article  CAS  Google Scholar 

  182. 182.

    X.G. Xu, H.L. Yang, Y. Wu, D.L. Zhang, S.Z. Wu, J. Miao, Y. Jiang, X.B. Qin, X.Z. Cao, and B.Y., Appl. Phys. Lett., 2010, 97, p 232502.

    Article  CAS  Google Scholar 

  183. 183.

    H. Luitel, P. Chettri, A. Tiwari, and D. Sanyal, Mater. Res. Bull., 2019, 110, p 13.

    CAS  Article  Google Scholar 

  184. 184.

    V. G. Il’ves and S. Y. Sokovnin, Journal of Magnetism and Magnetic Materials 441, 131 (2017).

  185. 185.

    H. Pan, J.B. Yi, L. Shen, R.Q. Wu, J.H. Yang, J.Y. Lin, Y.P. Feng, J. Ding, L.H. Van, and J.H. Yin, Phys. Rev. Lett., 2007, 99, p 127201.

    CAS  Article  Google Scholar 

  186. 186.

    J.B. Yi, L. Shen, H. Pan, L.H. Van, S. Thongmee, J.F. Hu, Y.W. Ma, J. Ding, and Y.P. Feng, J. Appl. Phys., 2009, 105, p 07C513.

    Article  CAS  Google Scholar 

  187. 187.

    Y.F. Wang, Y.C. Shao, S.H. Hsieh, Y.K. Chang, P.H. Yeh, H.C. Hsueh, J.W. Chiou, H.T. Wang, S.C. Ray, H.M. Tsai, C.W. Pao, C.H. Chen, H.J. Lin, J.F. Lee, C.T. Wu, J.J. Wu, Y.M. Chang, K. Asokan, K.H. Chae, T. Ohigashi, Y. Takagi, T. Yokoyama, N. Kosugi, and W.F. Pong, Scientific Report, 2018, 8, p 7758.

    CAS  Article  Google Scholar 

  188. 188.

    S. Zhou, Q. Xu, K. Potzger, G. Talut, R. Grötzsche, J. Fassbender, M. Vinnichenko, J. Grenzer, M. Helm, H. Hochmuth, M. Lorenz, M. Grundmann, and H. Schmidt, Appl. Phys. Lett., 2008, 93, p 232507.

    Article  Google Scholar 

  189. 189.

    M. Subramanian, Y. Akaike, Y. Hayashi, M. Tanemura, H. Ebisu, and D.L.S. Ping, Basic Solid State Physics, 2012, 249, p 1254.

    CAS  Article  Google Scholar 

  190. 190.

    Q. Xiu-Bo, L. Dong-Xiang, L. Rui-Qin, Z. Peng, L. Yu-Xiao, and W. Bao-Yi, Chinese Phys. B, 2014, 23, p 067502.

    Article  CAS  Google Scholar 

  191. 191.

    Y. Li, Y. Liu, J. Shi, and R. Xiong, Ceram. Int., 2018, 44, p 9664.

    Article  CAS  Google Scholar 

  192. 192.

    X. Nie, B. Zhang, J. Wang, L. Shi, Z. Di, and Q. Guo, Mater. Lett., 2015, 161, p 355.

    CAS  Article  Google Scholar 

  193. 193.

    M.H. Farooq, X.-G. Xu, H.-L. Yang, C.-J. Ran, J. Miao, M.Z. Iqbal, and Y. Jiang, Rare Met., 2013, 32, p 264.

    CAS  Article  Google Scholar 

  194. 194.

    Z. Zhang, U. Schwingenschlogl, and I.S. Roqan, RSC Adv., 2014, 4, p 50759.

    CAS  Article  Google Scholar 

  195. 195.

    S.B. Singh, Y. Wang, Y. Shao, H. Lai, S. Hsieh, M.V. Limaye, C. Chuang, H. Hsueh, H. Wang, J. Chiou, H. Tsai, C. Pao, C. Chen, H. Lin, J. Lee, C. Wu, J. Wu, W. Pong, T. Ohigashi, N. Kosugi, J. Wang, J. Zhou, T. Regier, and T. Sham, Nanoscale, 2014, 6, p 9166.

    CAS  Article  Google Scholar 

  196. 196.

    L. Tien, and Y. Hsieh, Mater. Res. Bull., 2014, 60, p 690.

    CAS  Article  Google Scholar 

  197. 197.

    J.M.D. Coey, Solid State Sci., 2005, 7, p 660.

    CAS  Article  Google Scholar 

  198. 198.

    A. Pimachev, G. Rimal, R.D. Nielsen, J. Tang, and Y. Dahnovsky, Phys. Chem. Chem. Phys., 2018, 20, p 29804.

    CAS  Article  Google Scholar 

  199. 199.

    S. Ninga, and Z. Zhang, RSC Adv., 2015, 5, p 3636.

    Article  CAS  Google Scholar 

  200. 200.

    B. Santara, P.K. Giri, K. Imakita, and M. Fujii, Nanoscale, 2013, 5, p 5476.

    CAS  Article  Google Scholar 

  201. 201.

    S. Ghose, T. Rakshit, R. Ranganathanc, and D. Jana, RSC Adv., 2015, 5, p 99766.

    CAS  Article  Google Scholar 

  202. 202.

    J.P. Singh, and K.H. Chae, Condens. Matter, 2017, 2, p 36.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Saad Mabrouk Yakout.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yakout, S.M. Room Temperature Ferromagnetism: Nonmagnetic Semiconductor Oxides and Nonmagnetic Dopants. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-021-08777-z

Download citation

Keywords

  • Electronics
  • magnetic semiconductor
  • room temperature ferromagnetism
  • d0 magnetism
  • nonmagnetic dopants
  • innovative spintronic devices