Realizing 8 cd A−1 Current Efficiency for Solution-Processed Inverted Top-Emitting Polymer Light-Emitting Diodes

Abstract

We report indium tin oxide-free top-emitting organic light-emitting diodes (OLEDs) with solution-processed organic layers. The two electrodes are made of evaporated silver, creating a Fabry-Perot resonator. The main issue of solution-processed OLEDs is the thickness reproducibility, which greatly influences the top-emitting OLED’s performance and color because of the optical resonator. In this work, we combine simulation with experimental results to show the good thickness homogeneity of the spin-coated layers, with a 7% thickness accuracy. Similar efficiencies are obtained for top- and bottom-emitting OLEDs based on the same organic materials, 8.1 ± 0.3 cd A−1 and 8.1 ± 0.2 cd A−1, respectively, with similar Commission Internationale de l’Éclairage (CIE) coordinates. This work demonstrates the feasibility to fabricate microcavity top-emitting OLEDs by solution process and the possibility to increase the performance by using a capping layer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    S. Taverne, B. Caron, S. Gétin, O. Lartigue, C. Lopez, S. Meunier-Della-Gatta, V. Gorge, M. Reymermier, B. Racine, T. Maindron, and E. Quesnel, J. Appl. Phys., 2018, 123, p 023108.

    Article  CAS  Google Scholar 

  2. 2.

    S.M. Jo, D.G. Yoon, R. Bail, and B.D. Chin, ECS J. Solid State Sci. Technol., 2016, 5, p R3185.

    CAS  Article  Google Scholar 

  3. 3.

    S. Choi, S. Kwon, H. Kim, W. Kim, J.H. Kwon, M.S. Lim, H.S. Lee, and K.C. Choi, Sci. Rep., 2017, 7, p 1.

    Article  CAS  Google Scholar 

  4. 4.

    H.K. Kim, D.G. Kim, K.S. Lee, M.S. Huh, S.H. Jeong, K.I. Kim, and T.Y. Seong, Appl. Phys. Lett., 2005, 86, p 1.

    Google Scholar 

  5. 5.

    G. Parthasarathy, G. Gu, and S.R. Forrest, Adv. Mater., 1999, 11, p 907.

    CAS  Article  Google Scholar 

  6. 6.

    J. Lee, C. Moon, J. Kim, J. Kim, J. Lee, C. Moon, and J. Kim, Appl. Phys. Lett., 2014, 104, p 1.

    Google Scholar 

  7. 7.

    H. Jin, C. Tao, M. Velusamy, M. Aljada, Y. Zhang, M. Hambsch, P.L. Burn, and P. Meredith, Adv. Mater., 2012, 24, p 2572.

    CAS  Article  Google Scholar 

  8. 8.

    Y. Peng, L. Zhang, N. Cheng, and T.L. Andrew, Energies, 2017, 10, p 707.

    Article  CAS  Google Scholar 

  9. 9.

    D.T. Nguyen, S. Vedraine, L. Cattin, P. Torchio, M. Morsli, F. Flory, and J.C. Bernède, J. Appl. Phys., 2012, 112, p 063505.

    Article  CAS  Google Scholar 

  10. 10.

    T. Schwab, S. Schubert, S. Hofmann, M. Fröbel, C. Fuchs, M. Thomschke, L. Müller-Meskamp, K. Leo, and M.C. Gather, Adv. Opt. Mater., 2013, 1, p 707.

    Article  Google Scholar 

  11. 11.

    H. Riel, S. Karg, T. Beierlein, W. Rieß, and K. Neyts, J. Appl. Phys., 2003, 94, p 5290.

    CAS  Article  Google Scholar 

  12. 12.

    S. Schubert, M. Hermenau, J. Meiss, L. Müller-Meskamp, and K. Leo, Adv. Funct. Mater., 2012, 22, p 4993.

    CAS  Article  Google Scholar 

  13. 13.

    W.J. Dong, J. Ham, G.H. Jung, J.H. Son, and J.L. Lee, J. Mater. Chem. A, 2016, 4, p 4755.

    CAS  Article  Google Scholar 

  14. 14.

    B. Tian, G. Williams, D. Ban, and H. Aziz, J. Appl. Phys., 2011, 110, p 104507.

    Article  CAS  Google Scholar 

  15. 15.

    Y.C. Han, M.S. Lim, J.H. Park, and K.C. Choi, IEEE Electron Device Lett., 2014, 35, p 238.

    Article  CAS  Google Scholar 

  16. 16.

    S. Hofmann, M. Thomschke, P. Freitag, M. Furno, B. Lüssem, and K. Leo, Appl. Phys. Lett., 2010, 97, p 253308.

    Article  CAS  Google Scholar 

  17. 17.

    K.A. Knauer, E. Najafabadi, W. Haske, M.P. Gaj, K.C. Davis, C. Fuentes-hernandez, U. Carrasco, and B. Kippelen, Org. Electron., 2013, 14, p 2418.

    CAS  Article  Google Scholar 

  18. 18.

    S.-R. Park, and M.C. Suh, Opt. Express, 2018, 26, p 4979.

    CAS  Article  Google Scholar 

  19. 19.

    C. Fuchs, P.A. Will, M. Wieczorek, M.C. Gather, S. Hofmann, S. Reineke, K. Leo, and R. Scholz, Phys. Rev. B Condens. Matter Mater. Phys., 2015, 92, p 245306.

    Article  CAS  Google Scholar 

  20. 20.

    J.-J. Lee, P. Li, H.-T. Kung, and Z.-H. Lu, J. Appl. Phys., 2019, 125, p 145501.

    Article  CAS  Google Scholar 

  21. 21.

    J. Meiss, M.K. Riede, and K. Leo, Appl. Phys. Lett., 2009, 94, p 1.

    Article  CAS  Google Scholar 

  22. 22.

    J. Lee, T.W. Koh, H. Cho, T. Schwab, J.H. Lee, S. Hofmann, J.I. Lee, S. Yoo, K. Leo, and M.C. Gather, J. Lumin., 2015, 162, p 180.

    CAS  Article  Google Scholar 

  23. 23.

    H.J. Peng, X.L. Zhu, J.X. Sun, X.M. Yu, M. Wong, and H.S. Kwok, Appl. Phys. Lett., 2006, 88, p 1.

    Google Scholar 

  24. 24.

    C. Xiang, W. Koo, F. So, H. Sasabe, and J. Kido, Light Sci. Appl., 2013, 2, p 1.

    Article  CAS  Google Scholar 

  25. 25.

    L. Merklein, D. Daume, F. Braig, S. Schlisske, T. Rödlmeier, M. Mink, D. Kourkoulos, B. Ulber, M. Di Biase, K. Meerholz, G. Hernandez-Sosa, U. Lemmer, H. Sauer, E. Dörsam, P. Scharfer, and W. Schabel, Colloids Interfaces, 2019, 3, p 32.

    CAS  Article  Google Scholar 

  26. 26.

    A. Sandström, and L. Edman, Energy Technol., 2015, 3, p 329.

    Article  CAS  Google Scholar 

  27. 27.

    Y.M. Chien, F. Lefevre, I. Shih, and R. Izquierdo, Nanotechnology, 2010, 21, p 1.

    Google Scholar 

  28. 28.

    S. Olivier, E. Ishow, S.M. Della-Gatta, and T. Maindron, Org. Electron., 2017, 49, p 24.

    CAS  Article  Google Scholar 

  29. 29.

    F. Ventsch, M.C. Gather, and K. Meerholz, Org. Electron., 2010, 11, p 57.

    CAS  Article  Google Scholar 

  30. 30.

    S.D. Yambem, M. Ullah, K. Tandy, P.L. Burn, and E.B. Namdas, Laser Photon. Rev., 2014, 8, p 165.

    CAS  Article  Google Scholar 

  31. 31.

    L. Hou, F. Huang, W. Zeng, J. Peng, and Y. Cao, Appl. Phys. Lett., 2005, 87, p 1.

    Google Scholar 

  32. 32.

    S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, Opt. Express, 2011, 19, p A1250.

    CAS  Article  Google Scholar 

  33. 33.

    S. Wang, Y. Zhao, H. Lian, C. Peng, X. Yang, Y. Gao, Y. Peng, W. Lan, O.I. Elmi, D. Stiévenard, B. Wei, F. Zhu, and T. Xu, Nanophotonics, 2019, 8, p 297.

    CAS  Article  Google Scholar 

  34. 34.

    M. Rawat, E. Jayaraman, S. Balasubramanian, and S.S.K. Iyer, Adv. Mater. Technol., 2019, 1900184, p 1.

    Google Scholar 

  35. 35.

    B.R. Patil, S. Shanmugam, J.P. Teunissen, and Y. Galagan, Org. Electron. Phys. Mater. Appl., 2015, 21, p 40.

    CAS  Google Scholar 

  36. 36.

    Y. Jiang, S. Chen, and H.S. Kwok, Dig. Tech. Pap. SID Int. Symp., 2017, 48, p 161.

    CAS  Article  Google Scholar 

  37. 37.

    G. Liu, X. Zhou, and S. Chen, ACS Appl. Mater. Interfaces, 2016, 8, p 16768.

    CAS  Article  Google Scholar 

  38. 38.

    S. Höfle, A. Schienle, M. Bruns, U. Lemmer, and A. Colsmann, Adv. Mater., 2014, 26, p 2750.

    Article  CAS  Google Scholar 

  39. 39.

    Y. Murat, E. Langer, J.-P. Barnes, J.-Y. Laurent, G. Wantz, L. Hirsch, and T. Maindron, Org. Electron., 2017, 48, p 377.

    CAS  Article  Google Scholar 

  40. 40.

    Y. Murat, G. Wantz, S. Fasquel, J.-Y. Laurent, T. Maindron, and L. Hirsch, Proc. SPIE, 2016, 9941, p 994129.

    Article  Google Scholar 

  41. 41.

    Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A.J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T.M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S.R. Marder, A. Kahn, B. Kippelen, J.-L. Bredas, S.R. Marder, A. Kahn, B. Kippelen, J.-L. Brédas, S.R. Marder, A. Kahn, and B. Kippelen, Science, 2012, 336, p 327.

    CAS  Article  Google Scholar 

  42. 42.

    Y.H. Kim, T.H. Han, H. Cho, S.Y. Min, C.L. Lee, and T.W. Lee, Adv. Funct. Mater., 2014, 24, p 3808.

    CAS  Article  Google Scholar 

  43. 43.

    H. Fukagawa, K. Morii, M. Hasegawa, Y. Arimoto, T. Kamada, T. Shimizu, and T. Yamamoto, Appl. Phys. Express 082104, (2014).

  44. 44.

    Y. Murat, H. Lüder, and M. Gerken, Light. Energy Environ. Congr. SSL, 1 (2018).

  45. 45.

    M.S. Kwon, J. Light. Technol., 2009, 27, p 4407.

    Article  Google Scholar 

  46. 46.

    O.T.A. Janssen, A.J.H. Wachters, and H.P. Urbach, Opt. Express, 2010, 18, p 24522.

    CAS  Article  Google Scholar 

  47. 47.

    S. Zhang, E.R. Martins, A.G. Diyaf, J.I.B. Wilson, G.A. Turnbull, and I.D.W. Samuel, Synth. Met., 2015, 205, p 127.

    CAS  Article  Google Scholar 

  48. 48.

    K.M. McPeak, S.V. Jayanti, S.J.P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D.J. Norris, ACS Photon., 2015, 2, p 326.

    CAS  Article  Google Scholar 

  49. 49.

    A. Ciesielski, L. Skowronski, M. Trzcinski, and T. Szoplik, Appl. Surf. Sci., 2017, 421, p 349.

    CAS  Article  Google Scholar 

  50. 50.

    L. Edman, M.A. Summers, S.K. Buratto, and A.J. Heeger, Phys. Rev. B, 2004, 70, p 1.

    Article  CAS  Google Scholar 

  51. 51.

    M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, and D.S. Ginley, Appl. Phys. Lett., 2006, 89, p 143517.

    Article  CAS  Google Scholar 

  52. 52.

    H. Ma, H.L. Yip, F. Huang, and A.K.Y. Jen, Adv. Funct. Mater., 2010, 20, p 1371.

    CAS  Article  Google Scholar 

  53. 53.

    X. Yang, E. Mutlugun, C. Dang, K. Dev, Y. Gao, S.T. Tan, X.W. Sun, and H.V. Demir, ACS Nano, 2014, 8, p 8224.

    CAS  Article  Google Scholar 

  54. 54.

    P. Li, L. Cai, G. Wang, D.C. Zhou, J. Xiang, Y.J. Zhang, B.F. Ding, K. Alameh, and Q.L. Song, Synth. Met., 2015, 203, p 243.

    CAS  Article  Google Scholar 

  55. 55.

    S. Burns, J. Macleod, T. Trang Do, P. Sonar, and S.D. Yambem, Sci. Rep., 2017, 7, p 1.

    CAS  Article  Google Scholar 

  56. 56.

    S.H. Lim and H.K. Kim, Sci. Rep., 2020, 10, p 1.

    Article  CAS  Google Scholar 

  57. 57.

    D. Han and S. Yoo, Sol. Energy Mater. Sol. Cells, 2014, 128, p 41.

    CAS  Article  Google Scholar 

  58. 58.

    T. Maindron, B. Aventurier, A. Ghazouani, T. Jullien, N. Rochat, J.Y. Simon, and E. Viasnoff, Thin Solid Films, 2013, 548, p 517.

    CAS  Article  Google Scholar 

  59. 59.

    S. Lee, J.H. Han, S.H. Lee, G.H. Baek, and J.S. Park, Jom, 2019, 71, p 197.

    Article  Google Scholar 

  60. 60.

    D.J. Semin and K.L. Rowlen, Anal. Chem., 1994, 66, p 4324.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support by Interreg (Project Rollflex, 1_11.12.2014).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yolande Murat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 228 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murat, Y., Lüder, H., Köpke, M. et al. Realizing 8 cd A−1 Current Efficiency for Solution-Processed Inverted Top-Emitting Polymer Light-Emitting Diodes. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-021-08776-0

Download citation

Keywords

  • Top-emitting OLEDs
  • solution process
  • polymer
  • super yellow
  • microcavity