Effect of Surface State on DC Breakdown Characteristics of Thermally Aged Double-Layered Polyester Films

Abstract

The surface state of polymer films has a significant influence on direct current (DC) breakdown characteristics, but its mechanism needs further investigation. In this paper, DC breakdown strength of thermally aged two-layer polyester films is studied. The charge trap and their space distribution characteristics are analyzed by an isothermal relaxation current and the pulsed electro-acoustic method. Furthermore, a bipolar charge transport model suitable for two-layer dielectrics is established, and the correlation between surface state and DC breakdown performance is dynamically simulated. The experimental results show that as the aging time increases, DC breakdown strength first increases and then decreases. The trap depth and its density first increase and then decrease, and the change mainly comes from dielectric surface area. The simulation results show that through modulating the injection and accumulation behaviors of space charges, the change of trap depth, density and extended depth of surface state have an important effect on the space charge and electric field distribution at the pre-breakdown time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    O.S. Gefle, S.M. Lebedev, V.A. Volokhin, S.N. Tkachenko, E.I. Cherkashina, Estimation of critical parameters of PET film insulation, in The 9th Russian–Korean International Symposium on Science and Technology (2005), p.143

  2. 2.

    O.S. Gefle, S.M. Lebedev, Y.P. Pokholkov, I. Vitellas, and D.P. Agoris, O.S. Gefle, S.M. Lebedev, Y.P. Pokholkov, I. Vitellas, and D.P. Agoris, IEE Proc. Sci. Meas. Technol., 2004, 151, p 273.

    CAS  Article  Google Scholar 

  3. 3.

    D. Adhikari, D.M. Hepburn, B.G. Stewart, Comparison of PD characteristics and degradation in PET insulation with vented and unvented voids, in IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena (2011), pp. 444

  4. 4.

    Q. Wang, C.-J. Ji, L. Huang, J.-W. Zhang, and R. Shi, Q. Wang, C.-J. Ji, L. Huang, J.-W. Zhang, and R. Shi, Int. J. Mod. Phys. B, 2019, 33, p 1950209.

    CAS  Article  Google Scholar 

  5. 5.

    G.C. Montanari, G.C. Montanari, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, p 339.

    Article  Google Scholar 

  6. 6.

    K. Matsui, Y. Tanaka, T. Takada, T. Fukao, K. Fukunaga, T. Maeno, and J.M. Alison, K. Matsui, Y. Tanaka, T. Takada, T. Fukao, K. Fukunaga, T. Maeno, and J.M. Alison, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, p 406.

    CAS  Article  Google Scholar 

  7. 7.

    Y. Zhou, C. Dai, and M. Huang, Y. Zhou, C. Dai, and M. Huang, CSEE J. Power Energy, 2016, 2, p 40.

    Article  Google Scholar 

  8. 8.

    G.C. Montanari, G.C. Montanari, IEEE Trans. Dielectr. Electr. Insul., 2000, 7, p 309.

    CAS  Article  Google Scholar 

  9. 9.

    F. Tian, J. Zhang, P. Xiao, and C. Hou, F. Tian, J. Zhang, P. Xiao, and C. Hou, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, p 1888.

    CAS  Article  Google Scholar 

  10. 10.

    J. Wu, L. Li, X. Li, Y. Yi, The influence of nano-filler on space charge distribution in LDPE/silica nanocomposites, in IEEE International Conference on Electrical Insulation Measurements (2012), p. 341

  11. 11.

    Y. Murakami, M. Nemoto, S. Okuzumi, S. Masuda, M. Nagao, N. Hozumi, and Y. Sekiguchi, Y. Murakami, M. Nemoto, S. Okuzumi, S. Masuda, M. Nagao, N. Hozumi, and Y. Sekiguchi, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, p 33.

    CAS  Article  Google Scholar 

  12. 12.

    S. Mitsumoto, K. Tanaka, M. Fukuma, M. Nagao, M. Kosaki, Observation of electrical breakdown and space charge formation in acetophenone-coated LDPE film under AC voltage application, in International Symposium on Electrical Insulating Materials (1998), p. 97

  13. 13.

    C. Li, J. He, and J. Hu, C. Li, J. He, and J. Hu, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, p 3071.

    CAS  Article  Google Scholar 

  14. 14.

    Y. Ma, C. Zhang, C. Li, G. Chen, and T. Shao, Y. Ma, C. Zhang, C. Li, G. Chen, and T. Shao, Proc. CSEE, 2016, 36, p 1731.

    Google Scholar 

  15. 15.

    S. Li, D. Min, W. Wang, and G. Chen, S. Li, D. Min, W. Wang, and G. Chen, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, p 3476.

    CAS  Article  Google Scholar 

  16. 16.

    J. Zhao, G. Chen, and L. Zhong, J. Zhao, G. Chen, and L. Zhong, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, p 1757.

    Article  Google Scholar 

  17. 17.

    J. Zhao, Z. Xu, G. Chen, and P.L. Lewin, J. Zhao, Z. Xu, G. Chen, and P.L. Lewin, J. Appl. Phys., 2010, 108, p 778.

    Google Scholar 

  18. 18.

    M. Taleb, T.G. Roy, and S.L.C. Laurent, M. Taleb, T.G. Roy, and S.L.C. Laurent, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, p 311.

    CAS  Article  Google Scholar 

  19. 19.

    M. Beigert, H.G. Kranz, Destruction free ageing diagnosis of power cable insulation using the isothermal relaxation current analysis, in IEEE International Symposium on Electrical Insulation Material (1994), p. 17

  20. 20.

    P. Morshuis, and M. Jeroense, P. Morshuis, and M. Jeroense, IEEE Electr. Insul. Mag., 1997, 13, p 26.

    Article  Google Scholar 

  21. 21.

    S.L. Roy, G. Teyssedre, C. Laurent, L.A. Dissado, G.C. Montanari, Relative importance of trapping and extraction in the simulation of space charge distribution in polymeric insulators under DC potentials, in IEEE International Conference on Solid Dielectrics (2007), p. 494

  22. 22.

    S. Tantipattarakul, A.S. Vaughan, T. Andritsch, S. Virtanen, Effect of interface chemistry on charge injection and trapping in polyethylene blend, in 17th International Symposium on HVDC Cable Systems (2017), p. 1

  23. 23.

    K. Yang, G.J. Zhang, M. Dong, Z. Yan, Electroluminescence and surface trap distribution in polymeric insulation, in IEEE International Conference on Solid Dielectrics (2007), p. 235

  24. 24.

    G. Chen, J. Zhao, S. Li, and L. Zhong, G. Chen, J. Zhao, S. Li, and L. Zhong, Appl. Phys. Lett., 2012, 100, p 2135.

    Google Scholar 

  25. 25.

    L. Ning, C. Zhou, G. Chen, X. Yang, J. Cao, and H. Wang, L. Ning, C. Zhou, G. Chen, X. Yang, J. Cao, and H. Wang, High Volt., 2016, 1, p 95.

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the State Grid Corporation of China (5200-201919048A-0-0-00), Mass Innovation Project of Zhejiang Electric Power Research Institute. We are grateful for their support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiongwei Jiang.

Ethics declarations

Conflict of interest

All authors have participated in conception and design, or analysis and interpretation of the data; drafting the article or revising it critically for important intellectual content; and approval of the final version.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Wang, S., Wang, W. et al. Effect of Surface State on DC Breakdown Characteristics of Thermally Aged Double-Layered Polyester Films. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-021-08771-5

Download citation

Keywords

  • Surface state
  • thermally aged
  • polyester film (PET)
  • charge trap
  • bipolar charge transport (BCT)
  • pre-breakdown time