Diminishing the Induced Strain and Oxygen Incorporation on Aluminium Nitride Films Deposited Using Pulsed Atomic-Layer Epitaxy Techniques at Standard Pressure MOCVD

Abstract

A pulsed atomic-layer epitaxy growth technique has been introduced to substantially diminish the induced strain and oxygen incorporation on aluminium nitride films grown at standard pressure by metal organic chemical vapour deposition. The qualities of the as-deposited aluminium nitride films were studied by varying the aluminium nitride nucleation layer growth temperature at 700°C, 800°C, 900°C, 1000°C and 1100°C, respectively. The compressive strain inside the as-deposited aluminium nitride films, induced by the hetero-epitaxial growth on sapphire, was investigated through Raman spectroscopy by focusing on the evolution of E2 (high) peak frequency, where almost stress-free aluminium nitride films were attained at nucleation layer growth temperature of 1100°C. Then, the correlation between luminescence defect and level of foreign impurities respective to the varied nucleation layer growth temperatures were also systematically analysed through photoluminescence spectroscopy and x-ray photoelectron spectroscopy, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

source and (b) the schematic of band-edge transition due to defect luminescence.

Fig. 5
Fig. 6

References

  1. 1.

    M.S. Shur, and R. Gaska, M.S. Shur, and R. Gaska, IEEE Trans. Electron Dev., 2010, 57, p 12. https://doi.org/10.1109/TED.2009.2033768

    CAS  Article  Google Scholar 

  2. 2.

    J.K. Sheu, S.J. Chang, C.H. Kuo, Y.K. Su, L.W. Wu, Y.C. Lin, W.C. Lai, J.M. Tsai, G.C. Chi, and R.K. Wu, J.K. Sheu, S.J. Chang, C.H. Kuo, Y.K. Su, L.W. Wu, Y.C. Lin, W.C. Lai, J.M. Tsai, G.C. Chi, and R.K. Wu, IEEE Photon Technol. Lett., 2003, 15, p 18. https://doi.org/10.1109/LPT.2002.805852

    Article  Google Scholar 

  3. 3.

    L. Sang, M. Liao, N. Ikeda, Y. Koide, and M. Sumiya, L. Sang, M. Liao, N. Ikeda, Y. Koide, and M. Sumiya, Appl. Phys. Lett., 2011. https://doi.org/10.1063/1.3654155

    Article  Google Scholar 

  4. 4.

    I. Demir, H. Li, Y. Robin, R. McClintock, S. Elagoz, and M. Razeghi, I. Demir, H. Li, Y. Robin, R. McClintock, S. Elagoz, and M. Razeghi, J. Phys. D. Appl. Phys., 2018. https://doi.org/10.1088/1361-6463/aaa926

    Article  Google Scholar 

  5. 5.

    Y. Ohba, and A. Hatano, Y. Ohba, and A. Hatano, Jpn. J. Appl. Physics Part 2 Lett., 1996. https://doi.org/10.1143/jjap.35.l1013

    Article  Google Scholar 

  6. 6.

    H.J. Kim, S. Choi, D. Yoo, J.H. Ryou, R.D. Dupuis, R.F. Dalmau, P. Lu, and Z. Sitar, H.J. Kim, S. Choi, D. Yoo, J.H. Ryou, R.D. Dupuis, R.F. Dalmau, P. Lu, and Z. Sitar, Appl. Phys. Lett., 2008, 93, p 2006. https://doi.org/10.1063/1.2959064

    CAS  Article  Google Scholar 

  7. 7.

    H. Hirayama, S. Fujikawa, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, H. Hirayama, S. Fujikawa, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, Phys. Status Solid Curr. Top. Solid State Phys., 2009. https://doi.org/10.1002/pssc.200880958

    Article  Google Scholar 

  8. 8.

    M. Imura, K. Nakano, G. Narita, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, M. Imura, K. Nakano, G. Narita, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, J. Cryst. Growth., 2007, 298, p 257. https://doi.org/10.1016/j.jcrysgro.2006.10.043

    CAS  Article  Google Scholar 

  9. 9.

    Z. Chen, R.S. Qhalid Fareed, M. Gaevski, V. Adivarahan, J.W. Yang, A. Khan, J. Mei, and F.A. Ponce, Z. Chen, R.S. Qhalid Fareed, M. Gaevski, V. Adivarahan, J.W. Yang, A. Khan, J. Mei, and F.A. Ponce, Appl. Phys. Lett., 2006. https://doi.org/10.1063/1.2245436

    Article  Google Scholar 

  10. 10.

    V. Hoffmann, A. Knauer, C. Brunner, S. Einfeldt, M. Weyers, G. Trnkle, K. Haberland, J.T. Zettler, and M. Kneissl, V. Hoffmann, A. Knauer, C. Brunner, S. Einfeldt, M. Weyers, G. Trnkle, K. Haberland, J.T. Zettler, and M. Kneissl, J. Cryst. Growth., 2011, 315, p 5. https://doi.org/10.1016/j.jcrysgro.2010.09.048

    CAS  Article  Google Scholar 

  11. 11.

    X.H. Li, Y.O. Wei, S. Wang, H. Xie, T.T. Kao, M.M. Satter, S.C. Shen, P.D. Yoder, T. Detchprohm, R.D. Dupuis, A.M. Fischer, and F.A. Ponce, X.H. Li, Y.O. Wei, S. Wang, H. Xie, T.T. Kao, M.M. Satter, S.C. Shen, P.D. Yoder, T. Detchprohm, R.D. Dupuis, A.M. Fischer, and F.A. Ponce, J. Cryst. Growth., 2015, 414, p 76. https://doi.org/10.1016/j.jcrysgro.2014.10.007

    CAS  Article  Google Scholar 

  12. 12.

    J.P. Zhang, E. Kuokstis, Q. Fareed, H.M. Wang, J.W. Yang, G. Simin, M. AsifKhan, G. Tamulaitis, G. Kurilcik, S. Jursenas, A. Zukauskas, R. Gaska, and M. Shur, J.P. Zhang, E. Kuokstis, Q. Fareed, H.M. Wang, J.W. Yang, G. Simin, M. AsifKhan, G. Tamulaitis, G. Kurilcik, S. Jursenas, A. Zukauskas, R. Gaska, and M. Shur, Phys. Status Solid Appl. Res., 2001, 188, p 95. https://doi.org/10.1002/1521-396X(200111)188:1%3c95::AID-PSSA95%3e3.0.CO;2-Q

    CAS  Article  Google Scholar 

  13. 13.

    S. Ruffenach-Clur, O. Briot, J.L. Rouvière, B. Gil, and R.L. Aulombard, S. Ruffenach-Clur, O. Briot, J.L. Rouvière, B. Gil, and R.L. Aulombard, Mater. Sci. Eng. B., 1997, 50, p 219. https://doi.org/10.1016/S0921-5107(97)00166-9

    Article  Google Scholar 

  14. 14.

    A.A. Allerman, M.H. Crawford, A.J. Fischer, K.H.A. Bogart, S.R. Lee, D.M. Follstaedt, P.P. Provencio, and D.D. Koleske, A.A. Allerman, M.H. Crawford, A.J. Fischer, K.H.A. Bogart, S.R. Lee, D.M. Follstaedt, P.P. Provencio, and D.D. Koleske, J. Cryst. Growth, 2004. https://doi.org/10.1016/j.jcrysgro.2004.08.035

    Article  Google Scholar 

  15. 15.

    M.N.A. Rahman, A.F. Sulaiman, M.I.M.A. Khudus, K. Allif, N.A. Talik, S.H. Basri, and A. Shuhaimi, M.N.A. Rahman, A.F. Sulaiman, M.I.M.A. Khudus, K. Allif, N.A. Talik, S.H. Basri, and A. Shuhaimi, Jpn. J. Appl. Phys., 2019, 58, p SC1037. https://doi.org/10.7567/1347-4065/ab09d3

    CAS  Article  Google Scholar 

  16. 16.

    M. Balaji, A. Claudel, V. Fellmann, I. Gélard, E. Blanquet, R. Boichot, A. Pierret, B. Attal-Trétout, A. Crisci, S. Coindeau, H. Roussel, D. Pique, K. Baskar, and M. Pons, M. Balaji, A. Claudel, V. Fellmann, I. Gélard, E. Blanquet, R. Boichot, A. Pierret, B. Attal-Trétout, A. Crisci, S. Coindeau, H. Roussel, D. Pique, K. Baskar, and M. Pons, J. Alloys Compd., 2012, 526, p 103. https://doi.org/10.1016/j.jallcom.2012.02.111

    CAS  Article  Google Scholar 

  17. 17.

    M. Takeuchi, H. Shimizu, R. Kajitani, K. Kawasaki, Y. Kumagai, A. Koukitu, and Y. Aoyagi, M. Takeuchi, H. Shimizu, R. Kajitani, K. Kawasaki, Y. Kumagai, A. Koukitu, and Y. Aoyagi, J. Cryst. Growth., 2007, 298, p 336. https://doi.org/10.1016/j.jcrysgro.2006.10.140

    CAS  Article  Google Scholar 

  18. 18.

    M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, Jpn. J. Appl. Phys Part 1 Regul. Pap. Short Notes Rev. Pap., 2007, 46, p 1458. https://doi.org/10.1143/JJAP.46.1458

    CAS  Article  Google Scholar 

  19. 19.

    J. Song, D. Chen, and J. Han, J. Song, D. Chen, and J. Han, J. Cryst. Growth., 2015, 415, p 127. https://doi.org/10.1016/j.jcrysgro.2014.12.041

    CAS  Article  Google Scholar 

  20. 20.

    M.N. Abd Rahman, A. Shuhaimi, Y. Yusuf, H. Li, A.F. Sulaiman, M.E. Alif Samsudin, N. Zainal, and M.I.M. Abdul Khudus, M.N. Abd Rahman, A. Shuhaimi, Y. Yusuf, H. Li, A.F. Sulaiman, M.E. Alif Samsudin, N. Zainal, and M.I.M. Abdul Khudus, Superlattices Microstruct., 2018, 120, p 319. https://doi.org/10.1016/j.spmi.2018.05.024

    CAS  Article  Google Scholar 

  21. 21.

    R. Chierchia, T. Böttcher, S. Figge, M. Diesselberg, H. Heinke, and D. Hommel, R. Chierchia, T. Böttcher, S. Figge, M. Diesselberg, H. Heinke, and D. Hommel, Phys. Status Solidi Basic Res., 2001, 228, p 403. https://doi.org/10.1002/1521-3951(200111)228:2%3c403::AID-PSSB403%3e3.0.CO;2-5

    CAS  Article  Google Scholar 

  22. 22.

    M. Kuball, M. Kuball, Raman spectroscopy of GaN, AlGaN and AlN for process and growth monitoring/control Surf. Interface Anal., 2001, 31, p 987. https://doi.org/10.1002/sia.1134

    CAS  Article  Google Scholar 

  23. 23.

    H. Wang, S.L. Li, H. Xiong, Z.H. Wu, J.N. Dai, Y. Tian, Y.Y. Fang, and C.Q. Chen, H. Wang, S.L. Li, H. Xiong, Z.H. Wu, J.N. Dai, Y. Tian, Y.Y. Fang, and C.Q. Chen, J. Electron. Mater., 2012, 41, p 466. https://doi.org/10.1007/s11664-011-1798-3

    CAS  Article  Google Scholar 

  24. 24.

    R. Yakimova, A. Kakanakova-Georgieva, G.R. Yazdi, G.K. Gueorguiev, and M. Syväjärvi, R. Yakimova, A. Kakanakova-Georgieva, G.R. Yazdi, G.K. Gueorguiev, and M. Syväjärvi, J. Cryst. Growth, 2005. https://doi.org/10.1016/j.jcrysgro.2005.03.015

    Article  Google Scholar 

  25. 25.

    M.N. Abd Rahman, N.A. Talik, M.I.M. Abdul Khudus, A.F. Sulaiman, K. Allif, N.M. Zahir, and A. Shuhaimi, M.N. Abd Rahman, N.A. Talik, M.I.M. Abdul Khudus, A.F. Sulaiman, K. Allif, N.M. Zahir, and A. Shuhaimi, CrystEngComm., 2019, 21, p 2009. https://doi.org/10.1039/C9CE00014C

    CAS  Article  Google Scholar 

  26. 26.

    M.N.A.R. Yusnizam Yusuf, A. Anuar, M.R. Mahat, N. Chanlek, N.A. Talik, M.I.M. Abdul Khudus, N. Zainal, W.H. Abd Majid, and A. Shuhaimi, M.N.A.R. Yusnizam Yusuf, A. Anuar, M.R. Mahat, N. Chanlek, N.A. Talik, M.I.M. Abdul Khudus, N. Zainal, W.H. Abd Majid, and A. Shuhaimi, CrystEngComm., 2020. https://doi.org/10.1039/D0CE00113A

    Article  Google Scholar 

  27. 27.

    S. Raghavan, and J.M. Redwing, S. Raghavan, and J.M. Redwing, J. Appl. Phys., 2004, 96, p 2995. https://doi.org/10.1063/1.1777812

    CAS  Article  Google Scholar 

  28. 28.

    A.R. Goñi, H. Siegle, C. Thomsen, K. Syassen, and J.M. Wagner, A.R. Goñi, H. Siegle, C. Thomsen, K. Syassen, and J.M. Wagner, Phys. Rev. B Condens. Matter Mater. Phys., 2001, 64, p 035205. https://doi.org/10.1103/PhysRevB.64.035205

    CAS  Article  Google Scholar 

  29. 29.

    J.Z. Li, Z.Z. Chen, Q.Q. Jiao, Y.L. Feng, S. Jiang, Y.F. Chen, T.J. Yu, S.F. Li, and G.Y. Zhang, J.Z. Li, Z.Z. Chen, Q.Q. Jiao, Y.L. Feng, S. Jiang, Y.F. Chen, T.J. Yu, S.F. Li, and G.Y. Zhang, CrystEngComm, 2015, 17, p 4469. https://doi.org/10.1039/c5ce00476d

    CAS  Article  Google Scholar 

  30. 30.

    M. Miyoshi, A. Watanabe, and T. Egawa, M. Miyoshi, A. Watanabe, and T. Egawa, Semicond. Sci. Technol, 2016. https://doi.org/10.1088/0268-1242/31/10/105016

    Article  Google Scholar 

  31. 31.

    L. Shen, T. Cheng, L. Wu, X. Li, and Q. Cui, L. Shen, T. Cheng, L. Wu, X. Li, and Q. Cui, J. Alloys Compd., 2008, 465, p 562. https://doi.org/10.1016/j.jallcom.2007.11.007

    CAS  Article  Google Scholar 

  32. 32.

    D. Chen, J. Wang, D. Xu, and Y. Zhang, D. Chen, J. Wang, D. Xu, and Y. Zhang, Vacuum, 2009, 83, p 865. https://doi.org/10.1016/j.vacuum.2008.09.003

    CAS  Article  Google Scholar 

  33. 33.

    I.A. Weinstein, A.S. Vokhmintsev, and D.M. Spiridonov, I.A. Weinstein, A.S. Vokhmintsev, and D.M. Spiridonov, Diam. Relat. Mater., 2012, 25, p 59. https://doi.org/10.1016/j.diamond.2012.02.004

    CAS  Article  Google Scholar 

  34. 34.

    V.A. Soltamov, I.V. Ilyin, A.A. Soltamova, D.O. Tolmachev, N.G. Romanov, A.S. Gurin, E.N. Mokhov, and P.G. Baranov, V.A. Soltamov, I.V. Ilyin, A.A. Soltamova, D.O. Tolmachev, N.G. Romanov, A.S. Gurin, E.N. Mokhov, and P.G. Baranov, Phys. Status Solidi Curr. Top. Solid State Phys., 2012, 9, p 745. https://doi.org/10.1002/pssc.201100433

    CAS  Article  Google Scholar 

  35. 35.

    S. Schweizer, U. Rogulis, J.M. Spaeth, L. Trinkler, and B. Berzina, S. Schweizer, U. Rogulis, J.M. Spaeth, L. Trinkler, and B. Berzina, Phys. Status Solidi Basic Res., 2000, 219, p 171. https://doi.org/10.1002/1521-3951(200005)219:1%3c171::AID-PSSB171%3e3.0.CO;2-0

    CAS  Article  Google Scholar 

  36. 36.

    T. Schulz, M. Albrecht, K. Irmscher, C. Hartmann, J. Wollweber, and R. Fornari, T. Schulz, M. Albrecht, K. Irmscher, C. Hartmann, J. Wollweber, and R. Fornari, Phys. Status Solidi Basic Res., 2011, 248, p 1513. https://doi.org/10.1002/pssb.201046616

    CAS  Article  Google Scholar 

  37. 37.

    L. Shen, N. Wang, and X. Xiao, L. Shen, N. Wang, and X. Xiao, Mater. Lett., 2013, 94, p 150. https://doi.org/10.1016/j.matlet.2012.12.042

    CAS  Article  Google Scholar 

  38. 38.

    G.A. Slack, H. Przybylinska, and G.D. Watkins, G.A. Slack, H. Przybylinska, and G.D. Watkins, Phys. Rev. B Condens. Matter Mater. Phys., 1999, 59, p 1937. https://doi.org/10.1103/PhysRevB.59.1937

    Article  Google Scholar 

  39. 39.

    M. Lamprecht, V.N. Jmerik, R. Collazo, Z. Sitar, S.V. Ivanov, and K. Thonke, M. Lamprecht, V.N. Jmerik, R. Collazo, Z. Sitar, S.V. Ivanov, and K. Thonke, Phys. Status Solidi Basic Res., 2017. https://doi.org/10.1002/pssb.201600714

    Article  Google Scholar 

  40. 40.

    A. Mahmood, R. Machorro, S. Muhl, J. Heiras, F.F. Castillón, M.H. Farías, and E. Andrade, A. Mahmood, R. Machorro, S. Muhl, J. Heiras, F.F. Castillón, M.H. Farías, and E. Andrade, Diam. Relat. Mater., 2003, 12, p 1315. https://doi.org/10.1016/S0925-9635(03)00076-1

    CAS  Article  Google Scholar 

  41. 41.

    L. Rosenberger, R. Baird, E. McCullen, G. Auner, and G. Shreve, L. Rosenberger, R. Baird, E. McCullen, G. Auner, and G. Shreve, Surf. Interface Anal., 2008, 40, p 1254. https://doi.org/10.1002/sia.2874

    CAS  Article  Google Scholar 

  42. 42.

    G.A. Slack, L.J. Schowalter, D. Morelli, and J.A. Freitas, G.A. Slack, L.J. Schowalter, D. Morelli, and J.A. Freitas, J. Cryst. Growth, 2002. https://doi.org/10.1016/S0022-0248(02)01753-0

    Article  Google Scholar 

  43. 43.

    M.N. Abd Rahman, A. Shuhaimi, O.C. Seng, G. Tan, A. Anuar, N.A. Talik, M.I.M. Abdul Khudus, N. Chanlek, and W.H. AbdMajid, M.N. Abd Rahman, A. Shuhaimi, O.C. Seng, G. Tan, A. Anuar, N.A. Talik, M.I.M. Abdul Khudus, N. Chanlek, and W.H. AbdMajid, J. Mater. Sci. Mater. Electron., 2021. https://doi.org/10.1007/s10854-020-05070-3

    Article  Google Scholar 

  44. 44.

    F. Liang, P. Chen, D.G. Zhao, D.S. Jiang, Z.J. Zhao, Z.S. Liu, J.J. Zhu, J. Yang, W. Liu, X.G. He, X.J. Li, X. Li, S.T. Liu, H. Yang, J.P. Liu, L.Q. Zhang, Y.T. Zhang, and G.T. Du, F. Liang, P. Chen, D.G. Zhao, D.S. Jiang, Z.J. Zhao, Z.S. Liu, J.J. Zhu, J. Yang, W. Liu, X.G. He, X.J. Li, X. Li, S.T. Liu, H. Yang, J.P. Liu, L.Q. Zhang, Y.T. Zhang, and G.T. Du, Appl. Phys. A Mater. Sci. Process., 2016. https://doi.org/10.1007/s00339-016-0312-4

    Article  Google Scholar 

  45. 45.

    M. Alevli, C. Ozgit, I. Donmez, and N. Biyikli, M. Alevli, C. Ozgit, I. Donmez, and N. Biyikli, Phys. Status Solidi Appl. Mater. Sci., 2012, 209, p 266. https://doi.org/10.1002/pssa.201127430

    CAS  Article  Google Scholar 

  46. 46.

    P. Martin, R. Netterfield, T. Kinder, and A. Bendavid, P. Martin, R. Netterfield, T. Kinder, and A. Bendavid, Appl. Opt., 1992, 31, p 6734. https://doi.org/10.1364/ao.31.006734

    CAS  Article  Google Scholar 

  47. 47.

    H. Kim, H.J. Yoon, and B.J. Choi, H. Kim, H.J. Yoon, and B.J. Choi, Nanoscale Res. Lett., 2018. https://doi.org/10.1186/s11671-018-2645-8

    Article  Google Scholar 

  48. 48.

    D. Manova, V. Dimitrova, W. Fukarek, and D. Karpuzov, D. Manova, V. Dimitrova, W. Fukarek, and D. Karpuzov, Surf. Coatings Technol., 1998, 106, p 205. https://doi.org/10.1016/S0257-8972(98)00527-1

    CAS  Article  Google Scholar 

  49. 49.

    M. Arbab, and J.J. Finley, M. Arbab, and J.J. Finley, J. Vaccum Sci. Technol. A Vaccum Surf. Film, 1994, 12, p 1528. https://doi.org/10.1116/1.579350

    CAS  Article  Google Scholar 

  50. 50.

    P. Motamedi, and K. Cadien, P. Motamedi, and K. Cadien, Appl. Surf. Sci., 2014, 315, p 104. https://doi.org/10.1016/j.apsusc.2014.07.105

    CAS  Article  Google Scholar 

  51. 51.

    R.A. Youngman, and J.H. Harris, R.A. Youngman, and J.H. Harris, J. Am. Ceram. Soc., 1990, 73, p 3238. https://doi.org/10.1111/j.1151-2916.1990.tb06444.x

    CAS  Article  Google Scholar 

  52. 52.

    H.M. Liao, R.N.S. Sodhi, and T.W. Coyle, H.M. Liao, R.N.S. Sodhi, and T.W. Coyle, J. Vaccum Sci. Technol. A Vaccum Surf. Film, 1993, 11, p 2681. https://doi.org/10.1116/1.578626

    CAS  Article  Google Scholar 

  53. 53.

    M. García-Méndez, S. Morales-Rodríguez, S. Shaji, B. Krishnan, and P. Bartolo-Pérez, M. García-Méndez, S. Morales-Rodríguez, S. Shaji, B. Krishnan, and P. Bartolo-Pérez, Surf. Rev. Lett., 2011, 18, p 23. https://doi.org/10.1142/S0218625X1101445X

    Article  Google Scholar 

  54. 54.

    O.H. Kim, D. Kim, and T. Anderson, O.H. Kim, D. Kim, and T. Anderson, J. Vaccum Sci. Technol. A Vaccum Surf. Film, 2009, 27, p 923. https://doi.org/10.1116/1.3106619

    CAS  Article  Google Scholar 

  55. 55.

    M. Kazan, B. Ruffĺ, C. Zgheib, and P. Masri, M. Kazan, B. Ruffĺ, C. Zgheib, and P. Masri, J. Appl. Phys., 2005. https://doi.org/10.1063/1.2137461

    Article  Google Scholar 

  56. 56.

    J.H. Harris, R.A. Younvman, and R.G. Teller, J.H. Harris, R.A. Younvman, and R.G. Teller, J. Mater. Res., 1990, 5, p 1763. https://doi.org/10.1557/JMR.1990.1763

    CAS  Article  Google Scholar 

  57. 57.

    F. Jose, R. Ramaseshan, S. Dash, S. Bera, A.K. Tyagi, and B. Raj, F. Jose, R. Ramaseshan, S. Dash, S. Bera, A.K. Tyagi, and B. Raj, J. Phys. D. Appl. Phys., 2010, 43, p 075304. https://doi.org/10.1088/0022-3727/43/7/075304

    CAS  Article  Google Scholar 

  58. 58.

    G.A. Slack, G.A. Slack, J. Phys. Chem. Solids., 1973, 34, p 321. https://doi.org/10.1016/0022-3697(73)90092-9

    CAS  Article  Google Scholar 

  59. 59.

    Y. Zhang, Y. Zhang, J. Mater. Sci. Lett., 2002, 21, p 1603. https://doi.org/10.1023/A:1020321600329

    CAS  Article  Google Scholar 

  60. 60.

    C. Ozgit, I. Donmez, M. Alevli, and N. Biyikli, C. Ozgit, I. Donmez, M. Alevli, and N. Biyikli, J. Vaccum Sci. Technol. A Vacuum Surf. Film., 2012, 30, p 01A124. https://doi.org/10.1116/1.3664102

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The author thanks to OSRAM Opto Semiconductor SDN BHD for the sponsorship studies, the Ministry of Higher Education (MOHE) Long Term Research Grant Scheme (LRGS) under project no: LR001A-2016A and CREST Gallium Nitride on Gallium Nitride Collaboration (PV015-2015) for project funding as well as my family Haji Abd Rahman Ulang, Hajah Patimah Mohd Yusoff, Nur Akmarina, Mohd Rezza, Mohd Edzuan, Nur Edzatul Aina, Muhammad Radzi, Muhammad Aizzat, my wife Mrs Dahliah Fatin Abdul Ghani together with my kids Muhammad Iman Rifqi and Muhammad Iman Hariz for their great support.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mohd Nazri Abd Rahman or Ahmad Shuhaimi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abd Rahman, M.N., Shuhaimi, A., Abdul Khudus, M.I.M. et al. Diminishing the Induced Strain and Oxygen Incorporation on Aluminium Nitride Films Deposited Using Pulsed Atomic-Layer Epitaxy Techniques at Standard Pressure MOCVD. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-021-08768-0

Download citation

Keywords

  • Aluminium nitride
  • pulsed atomic-layer epitaxy
  • induced strain
  • luminescence defect
  • oxygen impurities
  • MOCVD