Skip to main content
Log in

Solution-Processable LaTiOx-PVP as Silicon-Free Gate Dielectric at Low Temperature for High-Performance Organic-Inorganic Field Effect Transistors

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report that the organic-inorganic composite of polyvinyl phenol (PVP) and lanthanum titanate can be used as a gate dielectric layer of a low-voltage thin film transistor (TFT). The high-k organic-inorganic composite is synthesized at low temperatures through a solution-processable method and deposited by a simple spin-coating technology on polyethylene terephthalate coated by indium tin oxide (PET-ITO) film substrate. The fabricated devices show small and positive threshold voltage, and thus are applicable for low-power and high-speed operation. Thin film organic-inorganic composite transistors show high current on/off on order of 104, dependent on composition. Organic-inorganic thin film transistors (TFTs) fabricated using composite of polyvinyl phenol and lanthanum titanate layers as gate dielectric and zinc oxide (ZnO) films as channel layers exhibit superior electron transport characteristics with the electron mobility of 1.04 cm2 V−1 s−1, while the ratio of channel width (W) to channel length (L) for these devices is 20.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Yadav, and S. Ghosh, ACS Appl. Mater. Inter., 2016, 8, p 10436.

    Article  CAS  Google Scholar 

  2. H. Najafi-Ashtiani, Appl. Surf. Sci., 2018, 455, p 373.

    Article  CAS  Google Scholar 

  3. H. Chen, Y. Guo, G. Yu, Y. Zhao, J. Zhang, D. Gao, H. Liu, and Y. Liu, Adv. Mater., 2012, 24, p 4618.

    Article  CAS  Google Scholar 

  4. S. Jung, M. Albariqi, G. Gruntz, T. Al-Hathal, A. Peinado, E. Garcia-Caurel, Y. Nicolas, T. Toupance, Y. Bonnassieux, and G. Horowitz, ACS Appl. Mater. Inter., 2016, 8, p 14701.

    Article  CAS  Google Scholar 

  5. J. Huang, H. Zhu, Y. Chen, C. Preston, K. Rohrbach, J. Cumings, and L. Hu, ACS Nano, 2013, 7, p 2106.

    Article  CAS  Google Scholar 

  6. T. Rembert, C. Battaglia, A. Anders, and A. Javey, Adv. Mater., 2015, 27, p 6090.

    Article  CAS  Google Scholar 

  7. I. Isakov, H. Faber, M. Grell, G. Wyatt-Moon, N. Pliatsikas, T. Kehagias, G. P. Dimitrakopulos, P. P. Patsalas, R. Li, and T. D. Anthopoulos, Adv. Funct. Mater. 27 (2017).

  8. O. Acton, G. Ting, H. Ma, J.W. Ka, H. Yip, N.M. Tucker, and A.K.Y. Jen, Adv. Mater., 2008, 20, p 3697.

    Article  CAS  Google Scholar 

  9. E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, A.M.F. Gonçalves, A.J.S. Marques, L.M.N. Pereira, and R.F.P. Martins, Adv. Mater., 2005, 17, p 590.

    Article  CAS  Google Scholar 

  10. F. Igbari, Q. Shang, Y. Xie, X. Zhang, Z. Wang, and L. Liao, RSC Adv., 2016, 6, p 28801.

    Article  CAS  Google Scholar 

  11. A. Kumar, S. Mondal, and K.S.R.K. Rao, Appl. Surf. Sci., 2015, 370, p 373.

    Article  CAS  Google Scholar 

  12. J. Huang, Y. Tsai, M. Tsai, L. Huang, M. Lee, and M. Chen, Appl. Surf. Sci., 2015, 324, p 662.

    Article  CAS  Google Scholar 

  13. M.D. Morales-Acosta, M.A. Quevedo-López, and R. Ramírez-Bon, Mater. Chem. Phys., 2014, 146, p 380.

    Article  CAS  Google Scholar 

  14. Y. Chang, M. Yu, R. Lin, C. Hsu, and T. Hou, Appl. Phys. Lett., 2016, 108, p 033502.

    Article  CAS  Google Scholar 

  15. K. Satoh, Y. Yamada, Y. Kanaoka, S. Murakami, Y. Kakehi, and Y. Sakurai, Jpn. J. Appl. Phys., 2019, 58, p 038004.

    Article  CAS  Google Scholar 

  16. T. Partida-Manzanera, Z.H. Zaidi, J.W. Roberts, S.B. Dolmanan, K.B. Lee, P.A. Houston, P.R. Chalker, S. Tripathy, and R.J. Potter, J. Appl. Phys., 2019, 126, p 034102.

    Article  CAS  Google Scholar 

  17. K. Kandpal, N. Gupta, J. Singh, and C. Shekhar, J. Electron. Mater., 2020, 49, p 3156.

    Article  CAS  Google Scholar 

  18. S.Y. Tan, J. Electron. Mater., 2010, 39, p 2435.

    Article  CAS  Google Scholar 

  19. D.A. Vinnik, V.E. Zhivulin, A. Yu Starikov, S.A. Gudkova, E.A. Trofimov, A.V. Trukhanov, S.V. Trukhanov, V.A. Turchenko, V.V. Matveev, E. Lahderanta, E. Fadeev, T.I. Zubar, M.V. Zdorovets, and A.L. Kozlovsky, J. Magn. Magn. Mater., 2020, 498, p 166117.

    Article  CAS  Google Scholar 

  20. A.L. Kozlovskiy, I.E. Kenzhina, and M.V. Zdorovets, Ceram. Int., 2020, 46, p 10262.

    Article  CAS  Google Scholar 

  21. Y. Fujisaki, H. Koga, Y. Nakajima, M. Nakata, H. Tsuji, T. Yamamoto, T. Kurita, M. Nogi, and N. Shimidzu, Adv. Funct. Mater., 2014, 24, p 1657.

    Article  CAS  Google Scholar 

  22. P.Wang, D. Zhou, H.Guo, W. Liu, J. Su, M. Fu, C. Singh, and S.A. Trukhanov, J. Mater. Chem. A. 8, 11124 (2020).

  23. A.L. Kozlovskiy, and M.V. Zdorovets, Compos. B. Eng., 2020, 191, p 107968.

    Article  CAS  Google Scholar 

  24. H. Najafi-Ashtiani, A. Bahari, S. Gholipour, and S. Hoseinzadeh, Appl. Phys. A., 2018, 124, p 1.

    Article  CAS  Google Scholar 

  25. A. Liu, G. Liu, H. Zhu, B. Shin, E. Fortunato, R. Martins, and F. Shan, Appl. Phys. Lett., 2016, 108, p 233506.

    Article  CAS  Google Scholar 

  26. K. Kim, G. Park, H. Fukidome, T. Suemitsu, T. Otsuji, W. Cho, and M. Suemitsu, Jpn. J. Appl. Phys. 56, 06GF09 (2017).

  27. S.Y. Je, B.G. Son, H.G. Kim, M.Y. Park, L.M. Do, R. Choi, and J.K. Jeong, ACS Appl. Mater. Inter., 2014, 6, p 18693.

    Article  CAS  Google Scholar 

  28. L.Y. Matzui, A.V. Trukhanov, O.S. Yakovenko, L.L. Vovchenko, V.V. Zagorodnii, V.V. Oliynyk, M.O. Borovoy, E.L. Trukhanova, K.A. Astapovich, D.V. Karpinsky, and S.V. Trukhanov, Nanomaterials, 2019, 9, p 1720.

    Article  CAS  Google Scholar 

  29. M.A. Darwish, A.V. Trukhanov, O.S. Senatov, A.T. Morchenko, S.A. Saafan, K.A. Astapovich, S.V. Trukhanov, E.L. Trukhanova, A.A. Pilyushkin, A. Sergio, B. Sombra, D. Zhou, R.B. Jotania, and C. Singh, Nanomaterials, 2020, 10, p 492.

    Article  CAS  Google Scholar 

  30. H. Najafi-Ashtiani, and A. Bahari, Opt. Mater., 2016, 58, p 210.

    Article  CAS  Google Scholar 

  31. H. Najafi-Ashtiani, and A. Bahari, Synth. Met., 2016, 217, p 19.

    Article  CAS  Google Scholar 

  32. H. Najafi-Ashtiani, A. Bahari, and S. Ghasemi, J. Electroanal. Chem., 2016, 774, p 14.

    Article  CAS  Google Scholar 

  33. H. Najafi-Ashtiani, A. Bahari, and S. Ghasemi, Org. Electron., 2016, 37, p 213.

    Article  CAS  Google Scholar 

  34. W. C. Shin, H. Moon, S. Yoo, Y. Li, and B. Jin Cho, IEEE Electron Device Lett. 31, 1308 (2010).

  35. H. Najafi-Ashtiani, J. Mater. Sci. Mater., 2019, 30, p 7087.

    Article  CAS  Google Scholar 

  36. Y. Ha, S. Jeong, J. Wu, M. Kim, V.P. Dravid, A. Facchetti, and T.J. Marks, J. Am. Chem. Soc., 2010, 132, p 17426.

    Article  CAS  Google Scholar 

  37. R.P. Ortiz, A. Facchetti, and T.J. Marks, Chem. Rev., 2010, 110, p 205.

    Article  CAS  Google Scholar 

  38. S. Jeong, D. Kim, S. Lee, B. Park, and J. Moon, Appl. Phys. Lett., 2006, 89, p 264101.

    Article  CAS  Google Scholar 

  39. M. Shahbazi, A. Bahari, and S. Ghasemi, Synth. Met., 2016, 221, p 332.

    Article  CAS  Google Scholar 

  40. A. Hashemi, A. Bahari, and S. Ghasemi, Appl. Surf. Sci., 2017, 416, p 234.

    Article  CAS  Google Scholar 

  41. S.V. Trukhanov, I.O. Troyanchuk, N.V. Pushkarev, and H. Szymczak, J. Exp. Theor. Phys., 2002, 95, p 308.

    Article  CAS  Google Scholar 

  42. M.V. Zdorovets, and A.L. Kozlovskiy, Ceram. Int., 2020, 46, p 14548.

    Article  CAS  Google Scholar 

  43. B.I. Edmondson, S. Liu, S. Lu, H. Wu, A. Posadas, D.J. Smith, X.P.A. Gao, A.A. Demkov, and J.G. Ekerdt, J. Appl. Phys., 2018, 124, p 185303.

    Article  CAS  Google Scholar 

  44. F. J. Jing, L. Wang, Y. W. Liu, R. K. Y. Fu, X. B. Zhao, R. Shen, N. Huang, and Paul K. Chu, Thin Solid Films. 515, 1219 (2006).

  45. C.Y. Han, W.M. Tang, and P.T. Lai, IEEE Trans. Electron. Devices., 2017, 64, p 1716.

    Article  CAS  Google Scholar 

  46. Y. Baek, S. Lim, L.H. Kim, S. Park, S.W. Lee, T.H. Oh, S.H. Kim, and C.E. Park, Org. Electron., 2016, 28, p 139.

    Article  CAS  Google Scholar 

  47. M.V. Zdorovets, I.E. Kenzhina, V. Kudryashov, and A.L. Kozlovskiy, Ceram. Int., 2020, 46, p 10521.

    Article  CAS  Google Scholar 

  48. S.V. Trukhanov, V.A. Khomchenko, L.S. Lobanovski, M.V. Bushinsky, D.V. Karpinsky, V.V. Fedotova, I.O. Troyanchuk, A.V. Trukhanov, S.G. Stepin, R. Szymczak, C.E. Botez, and A. Adair, J. Exp. Theor. Phys., 2006, 103, p 398.

    Article  CAS  Google Scholar 

  49. A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, L. Yu Matzui, E.L. Trukhanova, and S.V. Trukhanov, J. Alloys Compd., 2018, 754, p 247.

    Article  CAS  Google Scholar 

  50. D.A. Vinnik, F.V. Podgornov, N.S. Zabeivorota, E.A. Trofimov, V.E. Zhivulin, A.S. Chernukha, M.V. Gavrilyak, S.A. Gudkova, D.A. Zherebtsov, A.V. Ryabov, S.V. Trukhanov, T.I. Zubar, L.V. Panina, S.V. Podgornaya, M.V. Zdorovets, and A.V. Trukhanov, J. Magn. Magn. Mater, 2020, 498, p 166190.

    Article  CAS  Google Scholar 

  51. H. Byun, E. You, and Y. Ha, Appl. Phys. Lett., 2019, 114, p 013301.

    Article  CAS  Google Scholar 

  52. A. Bahari, and M. Shahbazi, J. Electron. Mater., 2015, 45, p 1201.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Najafi-Ashtiani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi-Ashtiani, H., Tavousi, A., Ramzannezhad, A. et al. Solution-Processable LaTiOx-PVP as Silicon-Free Gate Dielectric at Low Temperature for High-Performance Organic-Inorganic Field Effect Transistors. J. Electron. Mater. 50, 2496–2503 (2021). https://doi.org/10.1007/s11664-021-08766-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08766-2

Keywords

Navigation