Solution-Processable LaTiOx-PVP as Silicon-Free Gate Dielectric at Low Temperature for High-Performance Organic-Inorganic Field Effect Transistors


We report that the organic-inorganic composite of polyvinyl phenol (PVP) and lanthanum titanate can be used as a gate dielectric layer of a low-voltage thin film transistor (TFT). The high-k organic-inorganic composite is synthesized at low temperatures through a solution-processable method and deposited by a simple spin-coating technology on polyethylene terephthalate coated by indium tin oxide (PET-ITO) film substrate. The fabricated devices show small and positive threshold voltage, and thus are applicable for low-power and high-speed operation. Thin film organic-inorganic composite transistors show high current on/off on order of 104, dependent on composition. Organic-inorganic thin film transistors (TFTs) fabricated using composite of polyvinyl phenol and lanthanum titanate layers as gate dielectric and zinc oxide (ZnO) films as channel layers exhibit superior electron transport characteristics with the electron mobility of 1.04 cm2 V−1 s−1, while the ratio of channel width (W) to channel length (L) for these devices is 20.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    S. Yadav, and S. Ghosh, ACS Appl. Mater. Inter., 2016, 8, p 10436.

    CAS  Article  Google Scholar 

  2. 2.

    H. Najafi-Ashtiani, Appl. Surf. Sci., 2018, 455, p 373.

    CAS  Article  Google Scholar 

  3. 3.

    H. Chen, Y. Guo, G. Yu, Y. Zhao, J. Zhang, D. Gao, H. Liu, and Y. Liu, Adv. Mater., 2012, 24, p 4618.

    CAS  Article  Google Scholar 

  4. 4.

    S. Jung, M. Albariqi, G. Gruntz, T. Al-Hathal, A. Peinado, E. Garcia-Caurel, Y. Nicolas, T. Toupance, Y. Bonnassieux, and G. Horowitz, ACS Appl. Mater. Inter., 2016, 8, p 14701.

    CAS  Article  Google Scholar 

  5. 5.

    J. Huang, H. Zhu, Y. Chen, C. Preston, K. Rohrbach, J. Cumings, and L. Hu, ACS Nano, 2013, 7, p 2106.

    CAS  Article  Google Scholar 

  6. 6.

    T. Rembert, C. Battaglia, A. Anders, and A. Javey, Adv. Mater., 2015, 27, p 6090.

    CAS  Article  Google Scholar 

  7. 7.

    I. Isakov, H. Faber, M. Grell, G. Wyatt-Moon, N. Pliatsikas, T. Kehagias, G. P. Dimitrakopulos, P. P. Patsalas, R. Li, and T. D. Anthopoulos, Adv. Funct. Mater. 27 (2017).

  8. 8.

    O. Acton, G. Ting, H. Ma, J.W. Ka, H. Yip, N.M. Tucker, and A.K.Y. Jen, Adv. Mater., 2008, 20, p 3697.

    CAS  Article  Google Scholar 

  9. 9.

    E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, A.M.F. Gonçalves, A.J.S. Marques, L.M.N. Pereira, and R.F.P. Martins, Adv. Mater., 2005, 17, p 590.

    CAS  Article  Google Scholar 

  10. 10.

    F. Igbari, Q. Shang, Y. Xie, X. Zhang, Z. Wang, and L. Liao, RSC Adv., 2016, 6, p 28801.

    CAS  Article  Google Scholar 

  11. 11.

    A. Kumar, S. Mondal, and K.S.R.K. Rao, Appl. Surf. Sci., 2015, 370, p 373.

    Article  CAS  Google Scholar 

  12. 12.

    J. Huang, Y. Tsai, M. Tsai, L. Huang, M. Lee, and M. Chen, Appl. Surf. Sci., 2015, 324, p 662.

    CAS  Article  Google Scholar 

  13. 13.

    M.D. Morales-Acosta, M.A. Quevedo-López, and R. Ramírez-Bon, Mater. Chem. Phys., 2014, 146, p 380.

    CAS  Article  Google Scholar 

  14. 14.

    Y. Chang, M. Yu, R. Lin, C. Hsu, and T. Hou, Appl. Phys. Lett., 2016, 108, p 033502.

    Article  CAS  Google Scholar 

  15. 15.

    K. Satoh, Y. Yamada, Y. Kanaoka, S. Murakami, Y. Kakehi, and Y. Sakurai, Jpn. J. Appl. Phys., 2019, 58, p 038004.

    CAS  Article  Google Scholar 

  16. 16.

    T. Partida-Manzanera, Z.H. Zaidi, J.W. Roberts, S.B. Dolmanan, K.B. Lee, P.A. Houston, P.R. Chalker, S. Tripathy, and R.J. Potter, J. Appl. Phys., 2019, 126, p 034102.

    Article  CAS  Google Scholar 

  17. 17.

    K. Kandpal, N. Gupta, J. Singh, and C. Shekhar, J. Electron. Mater., 2020, 49, p 3156.

    CAS  Article  Google Scholar 

  18. 18.

    S.Y. Tan, J. Electron. Mater., 2010, 39, p 2435.

    CAS  Article  Google Scholar 

  19. 19.

    D.A. Vinnik, V.E. Zhivulin, A. Yu Starikov, S.A. Gudkova, E.A. Trofimov, A.V. Trukhanov, S.V. Trukhanov, V.A. Turchenko, V.V. Matveev, E. Lahderanta, E. Fadeev, T.I. Zubar, M.V. Zdorovets, and A.L. Kozlovsky, J. Magn. Magn. Mater., 2020, 498, p 166117.

    CAS  Article  Google Scholar 

  20. 20.

    A.L. Kozlovskiy, I.E. Kenzhina, and M.V. Zdorovets, Ceram. Int., 2020, 46, p 10262.

    CAS  Article  Google Scholar 

  21. 21.

    Y. Fujisaki, H. Koga, Y. Nakajima, M. Nakata, H. Tsuji, T. Yamamoto, T. Kurita, M. Nogi, and N. Shimidzu, Adv. Funct. Mater., 2014, 24, p 1657.

    CAS  Article  Google Scholar 

  22. 22.

    P.Wang, D. Zhou, H.Guo, W. Liu, J. Su, M. Fu, C. Singh, and S.A. Trukhanov, J. Mater. Chem. A. 8, 11124 (2020).

  23. 23.

    A.L. Kozlovskiy, and M.V. Zdorovets, Compos. B. Eng., 2020, 191, p 107968.

    CAS  Article  Google Scholar 

  24. 24.

    H. Najafi-Ashtiani, A. Bahari, S. Gholipour, and S. Hoseinzadeh, Appl. Phys. A., 2018, 124, p 1.

    CAS  Article  Google Scholar 

  25. 25.

    A. Liu, G. Liu, H. Zhu, B. Shin, E. Fortunato, R. Martins, and F. Shan, Appl. Phys. Lett., 2016, 108, p 233506.

    Article  CAS  Google Scholar 

  26. 26.

    K. Kim, G. Park, H. Fukidome, T. Suemitsu, T. Otsuji, W. Cho, and M. Suemitsu, Jpn. J. Appl. Phys. 56, 06GF09 (2017).

  27. 27.

    S.Y. Je, B.G. Son, H.G. Kim, M.Y. Park, L.M. Do, R. Choi, and J.K. Jeong, ACS Appl. Mater. Inter., 2014, 6, p 18693.

    CAS  Article  Google Scholar 

  28. 28.

    L.Y. Matzui, A.V. Trukhanov, O.S. Yakovenko, L.L. Vovchenko, V.V. Zagorodnii, V.V. Oliynyk, M.O. Borovoy, E.L. Trukhanova, K.A. Astapovich, D.V. Karpinsky, and S.V. Trukhanov, Nanomaterials, 2019, 9, p 1720.

    CAS  Article  Google Scholar 

  29. 29.

    M.A. Darwish, A.V. Trukhanov, O.S. Senatov, A.T. Morchenko, S.A. Saafan, K.A. Astapovich, S.V. Trukhanov, E.L. Trukhanova, A.A. Pilyushkin, A. Sergio, B. Sombra, D. Zhou, R.B. Jotania, and C. Singh, Nanomaterials, 2020, 10, p 492.

    CAS  Article  Google Scholar 

  30. 30.

    H. Najafi-Ashtiani, and A. Bahari, Opt. Mater., 2016, 58, p 210.

    CAS  Article  Google Scholar 

  31. 31.

    H. Najafi-Ashtiani, and A. Bahari, Synth. Met., 2016, 217, p 19.

    CAS  Article  Google Scholar 

  32. 32.

    H. Najafi-Ashtiani, A. Bahari, and S. Ghasemi, J. Electroanal. Chem., 2016, 774, p 14.

    CAS  Article  Google Scholar 

  33. 33.

    H. Najafi-Ashtiani, A. Bahari, and S. Ghasemi, Org. Electron., 2016, 37, p 213.

    CAS  Article  Google Scholar 

  34. 34.

    W. C. Shin, H. Moon, S. Yoo, Y. Li, and B. Jin Cho, IEEE Electron Device Lett. 31, 1308 (2010).

  35. 35.

    H. Najafi-Ashtiani, J. Mater. Sci. Mater., 2019, 30, p 7087.

    CAS  Article  Google Scholar 

  36. 36.

    Y. Ha, S. Jeong, J. Wu, M. Kim, V.P. Dravid, A. Facchetti, and T.J. Marks, J. Am. Chem. Soc., 2010, 132, p 17426.

    CAS  Article  Google Scholar 

  37. 37.

    R.P. Ortiz, A. Facchetti, and T.J. Marks, Chem. Rev., 2010, 110, p 205.

    CAS  Article  Google Scholar 

  38. 38.

    S. Jeong, D. Kim, S. Lee, B. Park, and J. Moon, Appl. Phys. Lett., 2006, 89, p 264101.

    Article  CAS  Google Scholar 

  39. 39.

    M. Shahbazi, A. Bahari, and S. Ghasemi, Synth. Met., 2016, 221, p 332.

    CAS  Article  Google Scholar 

  40. 40.

    A. Hashemi, A. Bahari, and S. Ghasemi, Appl. Surf. Sci., 2017, 416, p 234.

    CAS  Article  Google Scholar 

  41. 41.

    S.V. Trukhanov, I.O. Troyanchuk, N.V. Pushkarev, and H. Szymczak, J. Exp. Theor. Phys., 2002, 95, p 308.

    CAS  Article  Google Scholar 

  42. 42.

    M.V. Zdorovets, and A.L. Kozlovskiy, Ceram. Int., 2020, 46, p 14548.

    CAS  Article  Google Scholar 

  43. 43.

    B.I. Edmondson, S. Liu, S. Lu, H. Wu, A. Posadas, D.J. Smith, X.P.A. Gao, A.A. Demkov, and J.G. Ekerdt, J. Appl. Phys., 2018, 124, p 185303.

    Article  CAS  Google Scholar 

  44. 44.

    F. J. Jing, L. Wang, Y. W. Liu, R. K. Y. Fu, X. B. Zhao, R. Shen, N. Huang, and Paul K. Chu, Thin Solid Films. 515, 1219 (2006).

  45. 45.

    C.Y. Han, W.M. Tang, and P.T. Lai, IEEE Trans. Electron. Devices., 2017, 64, p 1716.

    CAS  Article  Google Scholar 

  46. 46.

    Y. Baek, S. Lim, L.H. Kim, S. Park, S.W. Lee, T.H. Oh, S.H. Kim, and C.E. Park, Org. Electron., 2016, 28, p 139.

    CAS  Article  Google Scholar 

  47. 47.

    M.V. Zdorovets, I.E. Kenzhina, V. Kudryashov, and A.L. Kozlovskiy, Ceram. Int., 2020, 46, p 10521.

    CAS  Article  Google Scholar 

  48. 48.

    S.V. Trukhanov, V.A. Khomchenko, L.S. Lobanovski, M.V. Bushinsky, D.V. Karpinsky, V.V. Fedotova, I.O. Troyanchuk, A.V. Trukhanov, S.G. Stepin, R. Szymczak, C.E. Botez, and A. Adair, J. Exp. Theor. Phys., 2006, 103, p 398.

    CAS  Article  Google Scholar 

  49. 49.

    A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, L. Yu Matzui, E.L. Trukhanova, and S.V. Trukhanov, J. Alloys Compd., 2018, 754, p 247.

    CAS  Article  Google Scholar 

  50. 50.

    D.A. Vinnik, F.V. Podgornov, N.S. Zabeivorota, E.A. Trofimov, V.E. Zhivulin, A.S. Chernukha, M.V. Gavrilyak, S.A. Gudkova, D.A. Zherebtsov, A.V. Ryabov, S.V. Trukhanov, T.I. Zubar, L.V. Panina, S.V. Podgornaya, M.V. Zdorovets, and A.V. Trukhanov, J. Magn. Magn. Mater, 2020, 498, p 166190.

    Article  CAS  Google Scholar 

  51. 51.

    H. Byun, E. You, and Y. Ha, Appl. Phys. Lett., 2019, 114, p 013301.

    Article  CAS  Google Scholar 

  52. 52.

    A. Bahari, and M. Shahbazi, J. Electron. Mater., 2015, 45, p 1201.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hamed Najafi-Ashtiani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Najafi-Ashtiani, H., Tavousi, A., Ramzannezhad, A. et al. Solution-Processable LaTiOx-PVP as Silicon-Free Gate Dielectric at Low Temperature for High-Performance Organic-Inorganic Field Effect Transistors. Journal of Elec Materi (2021).

Download citation


  • Solution process
  • lanthanum titanate
  • field-effect transistor
  • silicon-free gate electrode
  • low temperature