Abstract
A series of five virescent color emitting terbium(III) complexes is fabricated by a cost-effective and eco-friendly solution precipitation technique with the utilization of 1-(4-methoxyphenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carboxylic acid (L) as a primary ligand and highly conjugated nitrogen donor secondary ligands such as bathophenanthroline (batho), 5,6-dimethyl-1,10-phenanthroline (dmph), 1,10-phenanthroline (phen) and 2,2-bipyridyl (bipy). The elemental compositions of complexes are examined through energy dispersive x-ray and elemental analyses, whilst the binding nature of ligand with terbium(III) ion is confirmed using proton nuclear magnetic resonance and infrared spectroscopy. The band gap energy (Eg) of complexes is found in the range of 3.85–3.34 eV as evaluated from diffuse reflectance spectral data. The significant thermal stability of these luminescent materials (157°C) demonstrates their key role as virescent component in white organic light emitting diodes. The intense emission and decay time of complexes are explored through photoluminescent study. The good color purity and Commission International De I’Eclairage color coordinates promise the enhanced performance of these materials in lighting appliances. The sensitization phenomenon highlights the role of ligands in increasing the luminescence intensity of complexes. The biological assessment indicates that the complexes are potent antimicrobial and antioxidant agents. The aforementioned features extend the field of applications of complexes in laser technology and optoelectronic devices.
This is a preview of subscription content, access via your institution.








References
- 1.
X. Zhang, W. Zhang, G. Li, Z. Xin, S. Li, P. Guan, and Y. Liu, Opt. Mater., 2019, 98, p 109425.
- 2.
A.K. Soni, and B.P. Singh, Intechopen, 2019. https://doi.org/10.5772/intechopen.82123
- 3.
V.V. Utochnikova, M.S. Abramovich, E.V. Latipov, A.I. Dalinger, A.S. Goloveshkin, A.A. Vashchenko, A.S. Kalyakina, S.Z. Vatsadze, U. Schepers, S. Brase, and N.P. Kuzmina, J. Lumin., 2019, 205, p 429.
- 4.
C. Yang, M. Moemeni, M. Bates, W. Sheng, B. Borhan, and R.R. Lunt, Adv. Opt. Mater., 2020, 8, p 1901536.
- 5.
M.S. Khan, R. Ilmi, W. Sun, J.D.L. Dutra, W.F. Oliveira, L. Zhou, W.Y. Wong, and P.R. Raithby, J. Mater. Chem. C, 2020, 8, p 5600.
- 6.
A.M. Kaczmarek, Y.Y. Liu, M.K. Kaczmarek, H. Liu, F. Artizzu, L.D. Carlos, and P.V.D. Voort, Angew. Chem. Int. Ed., 2019, 59(5), p 1932.
- 7.
J. Claude, and G. Bunzli, Eur. J. Inorg. Chem., 2017, 2017(44), p 5058.
- 8.
S. Omagari, T. Nakanishi, Y. Kitagawa, T. Seki, K. Fushimi, H. Ito, A. Meijerink, and Y. Hasegawa, Sci. Rep., 2016, 6, p 37008.
- 9.
T.V.U. Gangan, S. Sreenadh, and M.L.P. Reddy, J. Photochem. Photobiol. A, 2016, 328, p 171.
- 10.
Y.H. Xiao, Z.P. Deng, Z.B. Zhu, L.H. Huo, and S. Gao, J. Solid State Chem., 2019, 271, p 273.
- 11.
D. Kovacs, D. Phipps, A. Orthaber, and K.E. Borbas, Dalton Trans., 2018, 47, p 10702.
- 12.
B. Yue, Y.N. Chen, H.B. Chu, Y.R. Qu, A.L. Wang, and Y.L. Zhao, Inorg. Chim. Acta, 2014, 414, p 39.
- 13.
R. Boddula, and S. Vaidyanathan, Inorg. Chim. Acta, 2019, 494, p 141.
- 14.
J. Khanagwal, S.P. Khatkar, P. Dhankhar, M. Bala, R. Kumar, P. Boora, and V.B. Taxak, Spectrosc. Lett., 2020. https://doi.org/10.1080/00387010.2020.1817093
- 15.
R. Kataria, and A. Khatkar, BMC Chem., 2019, 13, p 45.
- 16.
S. Hussain, X. Chen, W.T.A. Harrison, M.R.J. Elsegood, S. Ahmad, S. Li, S. Muhammad, and D. Awoyelu, Front. Chem., 2019, 7, p 728.
- 17.
C. Jiao, R. Zhong, Y. Zhou, and H. Zhang, Int. J. Polym. Sci., 2020. https://doi.org/10.1155/2020/2175259
- 18.
Z. Yu, L. Shen, D. Li, E.Y.B. Pun, X. Zhao, and H. Lin, Sci. Rep., 2020, 10, p 926.
- 19.
M. Bala, S. Kumar, S. Chahar, V.B. Taxak, P. Boora, and S.P. Khatkar, Optik, 2020, 202, p 163636.
- 20.
P. Dhankhar, R. Devi, S. Devi, S. Chahar, M. Dalal, V.B. Taxak, S.P. Khatkar, and P. Boora, Rare Met., 2019. https://doi.org/10.1007/s12598-019-01261-y
- 21.
Y. Liu, R. Decadt, T. Bogaerts, K. Hemelsoet, A.M. Kaczmarck, D. Poelman, M. Waroquier, V.V. Speybroeck, R.V. Deun, and P.V.D. Voort, J. Phys. Chem. C, 2013, 117, p 11302.
- 22.
M. Bala, S. Kumar, R. Devi, V.B. Taxak, P. Boora, and S.P. Khatkar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 196, p 67.
- 23.
P. Sehrawat, A. Khatkar, P. Boora, J. Khanagwal, M. Kumar, R.K. Malik, S.P. Khatkar, and V.B. Taxak, Chem. Phys. Lett., 2020, 755, p 137758.
- 24.
P. Sehrawat, A. Khatkar, S. Devi, A. Hooda, S. Singh, R.K. Malik, S.P. Khatkar, and V.B. Taxak, Chem. Phys. Lett., 2019, 737, p 136842.
- 25.
S.H. Mousavi, S.A.J. Mohammdi, H. Haratizadeh, and P.W. de Oliveira, Intech Open, 2014. https://doi.org/10.5772/59103
- 26.
H. Jin, L. Qin, L. Zhang, X. Zeng, and R. Yang, MATEC Web Conf., 2016, 40, p 01006.
- 27.
C. Suresh, H. Nagabhushana, G.P. Darshan, R.B. Basavaraj, D. Kavyashree, S.C. Sharma, A. Arulmozhi, B. Daruka Prasad, and H.J. Amith Yadav, Arab. J. Chem., 2018, 11, p 460.
- 28.
Jin-gang Liu, M. Ueda, J. Mater. Chem. 19, 8907 (2009).
- 29.
C.H. Park, J.G. Kim, S.G. Jung, D.J. Lee, Y.W. Park, and B.K. Ju, Sci. Rep., 2019, 9, p 8690.
- 30.
J. Dalal, A. Khatkar, M. Dalal, V.B. Taxak, and S.P. Khatkar, J. Mater. Sci. Mater. Electron., 2020. https://doi.org/10.1007/s10854-019-02633-x
- 31.
M.A. Silva, N.R. de Campos, L.A. Ferreira, L.S. Flores, J.C.A. Junior, G.L. dos Santos, C.C. Correa, T.C. dos Santos, C.M. Ronconi, M.V. Colaco, T.R.G. Simoes, L.F. Marques, and M.V. Marinho, Inorg. Chim. Acta, 2019, 495, p 118967.
- 32.
K. Iman, M. Shahid, and R. Soc, Chem., 2019, 43, p 1094.
- 33.
D.V. Lapaev, V.G. Nikiforov, V.S. Lobkov, A.A. Knyazev, and Y.G. Galyametdinov, J. Mater. Chem. C, 2018, 6, p 9475.
- 34.
H. Gallardo, G. Conte, A.J. Bortoluzzi, I.H. Bechtold, A. Pereira, W.G. Quirino, C. Legnani, and M. Cremona, Inorg. Chim. Acta, 2011, 365, p 152.
- 35.
Z.A. Taha, A.M. Ajlouni, and W.A. Momani, J. Lumin., 2012, 132, p 2832.
- 36.
R. Devi, S. Chahar, S.P. Khatkar, V.B. Taxak, and P. Boora, J. Fluoresc., 2017, 27, p 1349.
- 37.
Y. Hasegawa, and T. Nakanish,RSC Adv., 2015, 5, p 338.
- 38.
Y. Wang, P.G. Wilczynsk, X. Zhang, J. Yin, Y. Wen, and H. Li, Sci. China Mater., 2020, 63, p 544.
- 39.
M. Seshadri, V. de Carvalho dos Anjos and M.J.V. Bell, Intech Open, 2016. https://doi.org/10.5772/65057
- 40.
J. Dalal, M. Dalal, S. Devi, A. Hooda, A. Khatkar, V.B. Taxak, and S.P. Khatkar, J. Lumin., 2019, 216, p 116697.
- 41.
J. Schanda, Encyclopedia of Color Science and Technology Springer, New York, 2015 https://doi.org/10.1007/978-3-642-27851-8_325-1
- 42.
Z. Yahiaoui, M.A. Hassairi, and M. Dammak, J. Electron. Mater., 2017, 46(8), p 4765.
- 43.
C. Wei, D. Xu, Z. Yang, J. Li, X. Chen, X. Li, J. Sun, X. Chen, X. Li, and J. Sun, J. Electron. Mater., 2019. https://doi.org/10.1007/s11664-019-07306-3
- 44.
P. Dhankhar, M. Bedi, J. Khanagwal, V.B. Taxak, S.P. Khatkar, and P.B. Doon, Spectrosc. Lett., 2020, 53, p 256.
- 45.
L. Zapala, M. Kosinska, E. Woznicka, L. Byczynski, E. Ciszkowicz, K.L. Szlachta, W. Zapala, and M. Chutkowski, Thermochim. Acta, 2019, 671, p 134.
- 46.
O.O.E. Onawumi, O.A. Odunola, E. Suresh, and P. Paul, Inorg. Chem. Commun., 2011, 14, p 1626.
- 47.
J. Ravichandran, P. Gurumoorthy, M.A.I. Musthafa, and A.K. Rahiman, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 133, p 785.
- 48.
A.V. Kharcheva, N.E. Borisova, A.V. Ivanov, M.D. Reshetova, T.P. Kaminskaya, V.V. Popov, V.I. Yuzhakov, and S.V. Patsaeva, Russ. J. Inorg. Chem., 2018, 63, p 219.
- 49.
R. Devi, S. Chahar, S.P. Khatkar, V.B. Taxak, and P. Boora, Inorganica Chim. Acta, 2018, 471, p 364.
- 50.
F.J. Steemers, W. Verboom, D.N. Reinhoudt, E.B. van der Tol, and J.W. Verhoeven, J. Am. Chem. Soc., 1995, 117, p 9408.
- 51.
M. Latva, H. Takalo, V.M. Mukkala, C. Matachescu, J.C. Rodriguez-Ubis, and J. Kankare, J. Lumin., 1997, 75, p 149.
Acknowledgments
The authors express their heartfelt gratitude to the University Grants Commission (UGC) for its monetary support under SAP (Special Assistance Programme) (No. F.540/17/DRS-I/2016 SAP-I) to Department of Chemistry, M.D.U. Rohtak.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Khanagwal, J., Kumar, R., Bedi, M. et al. Enhanced Optoelectronic and Biological Potential of Virescent-Glowing Terbium(III) Complexes with Pyrazole Acid. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-021-08765-3
Received:
Accepted:
Published:
Keywords
- Photoluminescence properties
- free radical scavenging activity
- optical band gap
- energy transfer mechanism