Enhanced Optoelectronic and Biological Potential of Virescent-Glowing Terbium(III) Complexes with Pyrazole Acid


A series of five virescent color emitting terbium(III) complexes is fabricated by a cost-effective and eco-friendly solution precipitation technique with the utilization of 1-(4-methoxyphenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carboxylic acid (L) as a primary ligand and highly conjugated nitrogen donor secondary ligands such as bathophenanthroline (batho), 5,6-dimethyl-1,10-phenanthroline (dmph), 1,10-phenanthroline (phen) and 2,2-bipyridyl (bipy). The elemental compositions of complexes are examined through energy dispersive x-ray and elemental analyses, whilst the binding nature of ligand with terbium(III) ion is confirmed using proton nuclear magnetic resonance and infrared spectroscopy. The band gap energy (Eg) of complexes is found in the range of 3.85–3.34 eV as evaluated from diffuse reflectance spectral data. The significant thermal stability of these luminescent materials (157°C) demonstrates their key role as virescent component in white organic light emitting diodes. The intense emission and decay time of complexes are explored through photoluminescent study. The good color purity and Commission International De I’Eclairage color coordinates promise the enhanced performance of these materials in lighting appliances. The sensitization phenomenon highlights the role of ligands in increasing the luminescence intensity of complexes. The biological assessment indicates that the complexes are potent antimicrobial and antioxidant agents. The aforementioned features extend the field of applications of complexes in laser technology and optoelectronic devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    X. Zhang, W. Zhang, G. Li, Z. Xin, S. Li, P. Guan, and Y. Liu, Opt. Mater., 2019, 98, p 109425.

    CAS  Article  Google Scholar 

  2. 2.

    A.K. Soni, and B.P. Singh, Intechopen, 2019. https://doi.org/10.5772/intechopen.82123

    Article  Google Scholar 

  3. 3.

    V.V. Utochnikova, M.S. Abramovich, E.V. Latipov, A.I. Dalinger, A.S. Goloveshkin, A.A. Vashchenko, A.S. Kalyakina, S.Z. Vatsadze, U. Schepers, S. Brase, and N.P. Kuzmina, J. Lumin., 2019, 205, p 429.

    CAS  Article  Google Scholar 

  4. 4.

    C. Yang, M. Moemeni, M. Bates, W. Sheng, B. Borhan, and R.R. Lunt, Adv. Opt. Mater., 2020, 8, p 1901536.

    CAS  Article  Google Scholar 

  5. 5.

    M.S. Khan, R. Ilmi, W. Sun, J.D.L. Dutra, W.F. Oliveira, L. Zhou, W.Y. Wong, and P.R. Raithby, J. Mater. Chem. C, 2020, 8, p 5600.

    CAS  Article  Google Scholar 

  6. 6.

    A.M. Kaczmarek, Y.Y. Liu, M.K. Kaczmarek, H. Liu, F. Artizzu, L.D. Carlos, and P.V.D. Voort, Angew. Chem. Int. Ed., 2019, 59(5), p 1932.

    Article  CAS  Google Scholar 

  7. 7.

    J. Claude, and G. Bunzli, Eur. J. Inorg. Chem., 2017, 2017(44), p 5058.

    Article  CAS  Google Scholar 

  8. 8.

    S. Omagari, T. Nakanishi, Y. Kitagawa, T. Seki, K. Fushimi, H. Ito, A. Meijerink, and Y. Hasegawa, Sci. Rep., 2016, 6, p 37008.

    CAS  Article  Google Scholar 

  9. 9.

    T.V.U. Gangan, S. Sreenadh, and M.L.P. Reddy, J. Photochem. Photobiol. A, 2016, 328, p 171.

    CAS  Article  Google Scholar 

  10. 10.

    Y.H. Xiao, Z.P. Deng, Z.B. Zhu, L.H. Huo, and S. Gao, J. Solid State Chem., 2019, 271, p 273.

    CAS  Article  Google Scholar 

  11. 11.

    D. Kovacs, D. Phipps, A. Orthaber, and K.E. Borbas, Dalton Trans., 2018, 47, p 10702.

    CAS  Article  Google Scholar 

  12. 12.

    B. Yue, Y.N. Chen, H.B. Chu, Y.R. Qu, A.L. Wang, and Y.L. Zhao, Inorg. Chim. Acta, 2014, 414, p 39.

    CAS  Article  Google Scholar 

  13. 13.

    R. Boddula, and S. Vaidyanathan, Inorg. Chim. Acta, 2019, 494, p 141.

    CAS  Article  Google Scholar 

  14. 14.

    J. Khanagwal, S.P. Khatkar, P. Dhankhar, M. Bala, R. Kumar, P. Boora, and V.B. Taxak, Spectrosc. Lett., 2020. https://doi.org/10.1080/00387010.2020.1817093

    Article  Google Scholar 

  15. 15.

    R. Kataria, and A. Khatkar, BMC Chem., 2019, 13, p 45.

    Article  CAS  Google Scholar 

  16. 16.

    S. Hussain, X. Chen, W.T.A. Harrison, M.R.J. Elsegood, S. Ahmad, S. Li, S. Muhammad, and D. Awoyelu, Front. Chem., 2019, 7, p 728.

    CAS  Article  Google Scholar 

  17. 17.

    C. Jiao, R. Zhong, Y. Zhou, and H. Zhang, Int. J. Polym. Sci., 2020. https://doi.org/10.1155/2020/2175259

    Article  Google Scholar 

  18. 18.

    Z. Yu, L. Shen, D. Li, E.Y.B. Pun, X. Zhao, and H. Lin, Sci. Rep., 2020, 10, p 926.

    CAS  Article  Google Scholar 

  19. 19.

    M. Bala, S. Kumar, S. Chahar, V.B. Taxak, P. Boora, and S.P. Khatkar, Optik, 2020, 202, p 163636.

    Article  CAS  Google Scholar 

  20. 20.

    P. Dhankhar, R. Devi, S. Devi, S. Chahar, M. Dalal, V.B. Taxak, S.P. Khatkar, and P. Boora, Rare Met., 2019. https://doi.org/10.1007/s12598-019-01261-y

    Article  Google Scholar 

  21. 21.

    Y. Liu, R. Decadt, T. Bogaerts, K. Hemelsoet, A.M. Kaczmarck, D. Poelman, M. Waroquier, V.V. Speybroeck, R.V. Deun, and P.V.D. Voort, J. Phys. Chem. C, 2013, 117, p 11302.

    CAS  Article  Google Scholar 

  22. 22.

    M. Bala, S. Kumar, R. Devi, V.B. Taxak, P. Boora, and S.P. Khatkar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 196, p 67.

    CAS  Article  Google Scholar 

  23. 23.

    P. Sehrawat, A. Khatkar, P. Boora, J. Khanagwal, M. Kumar, R.K. Malik, S.P. Khatkar, and V.B. Taxak, Chem. Phys. Lett., 2020, 755, p 137758.

    CAS  Article  Google Scholar 

  24. 24.

    P. Sehrawat, A. Khatkar, S. Devi, A. Hooda, S. Singh, R.K. Malik, S.P. Khatkar, and V.B. Taxak, Chem. Phys. Lett., 2019, 737, p 136842.

    CAS  Article  Google Scholar 

  25. 25.

    S.H. Mousavi, S.A.J. Mohammdi, H. Haratizadeh, and P.W. de Oliveira, Intech Open, 2014. https://doi.org/10.5772/59103

    Article  Google Scholar 

  26. 26.

    H. Jin, L. Qin, L. Zhang, X. Zeng, and R. Yang, MATEC Web Conf., 2016, 40, p 01006.

    Article  Google Scholar 

  27. 27.

    C. Suresh, H. Nagabhushana, G.P. Darshan, R.B. Basavaraj, D. Kavyashree, S.C. Sharma, A. Arulmozhi, B. Daruka Prasad, and H.J. Amith Yadav, Arab. J. Chem., 2018, 11, p 460.

    CAS  Article  Google Scholar 

  28. 28.

    Jin-gang Liu, M. Ueda, J. Mater. Chem. 19, 8907 (2009).

  29. 29.

    C.H. Park, J.G. Kim, S.G. Jung, D.J. Lee, Y.W. Park, and B.K. Ju, Sci. Rep., 2019, 9, p 8690.

    Article  CAS  Google Scholar 

  30. 30.

    J. Dalal, A. Khatkar, M. Dalal, V.B. Taxak, and S.P. Khatkar, J. Mater. Sci. Mater. Electron., 2020. https://doi.org/10.1007/s10854-019-02633-x

    Article  Google Scholar 

  31. 31.

    M.A. Silva, N.R. de Campos, L.A. Ferreira, L.S. Flores, J.C.A. Junior, G.L. dos Santos, C.C. Correa, T.C. dos Santos, C.M. Ronconi, M.V. Colaco, T.R.G. Simoes, L.F. Marques, and M.V. Marinho, Inorg. Chim. Acta, 2019, 495, p 118967.

    CAS  Article  Google Scholar 

  32. 32.

    K. Iman, M. Shahid, and R. Soc, Chem., 2019, 43, p 1094.

    CAS  Google Scholar 

  33. 33.

    D.V. Lapaev, V.G. Nikiforov, V.S. Lobkov, A.A. Knyazev, and Y.G. Galyametdinov, J. Mater. Chem. C, 2018, 6, p 9475.

    CAS  Article  Google Scholar 

  34. 34.

    H. Gallardo, G. Conte, A.J. Bortoluzzi, I.H. Bechtold, A. Pereira, W.G. Quirino, C. Legnani, and M. Cremona, Inorg. Chim. Acta, 2011, 365, p 152.

    CAS  Article  Google Scholar 

  35. 35.

    Z.A. Taha, A.M. Ajlouni, and W.A. Momani, J. Lumin., 2012, 132, p 2832.

    CAS  Article  Google Scholar 

  36. 36.

    R. Devi, S. Chahar, S.P. Khatkar, V.B. Taxak, and P. Boora, J. Fluoresc., 2017, 27, p 1349.

    CAS  Article  Google Scholar 

  37. 37.

    Y. Hasegawa, and T. Nakanish,RSC Adv., 2015, 5, p 338.

    CAS  Article  Google Scholar 

  38. 38.

    Y. Wang, P.G. Wilczynsk, X. Zhang, J. Yin, Y. Wen, and H. Li, Sci. China Mater., 2020, 63, p 544.

    CAS  Article  Google Scholar 

  39. 39.

    M. Seshadri, V. de Carvalho dos Anjos and M.J.V. Bell, Intech Open, 2016. https://doi.org/10.5772/65057

    Article  Google Scholar 

  40. 40.

    J. Dalal, M. Dalal, S. Devi, A. Hooda, A. Khatkar, V.B. Taxak, and S.P. Khatkar, J. Lumin., 2019, 216, p 116697.

    CAS  Article  Google Scholar 

  41. 41.

    J. Schanda, Encyclopedia of Color Science and Technology Springer, New York, 2015 https://doi.org/10.1007/978-3-642-27851-8_325-1

    Google Scholar 

  42. 42.

    Z. Yahiaoui, M.A. Hassairi, and M. Dammak, J. Electron. Mater., 2017, 46(8), p 4765.

    CAS  Article  Google Scholar 

  43. 43.

    C. Wei, D. Xu, Z. Yang, J. Li, X. Chen, X. Li, J. Sun, X. Chen, X. Li, and J. Sun, J. Electron. Mater., 2019. https://doi.org/10.1007/s11664-019-07306-3

    Article  Google Scholar 

  44. 44.

    P. Dhankhar, M. Bedi, J. Khanagwal, V.B. Taxak, S.P. Khatkar, and P.B. Doon, Spectrosc. Lett., 2020, 53, p 256.

    CAS  Article  Google Scholar 

  45. 45.

    L. Zapala, M. Kosinska, E. Woznicka, L. Byczynski, E. Ciszkowicz, K.L. Szlachta, W. Zapala, and M. Chutkowski, Thermochim. Acta, 2019, 671, p 134.

    CAS  Article  Google Scholar 

  46. 46.

    O.O.E. Onawumi, O.A. Odunola, E. Suresh, and P. Paul, Inorg. Chem. Commun., 2011, 14, p 1626.

    CAS  Article  Google Scholar 

  47. 47.

    J. Ravichandran, P. Gurumoorthy, M.A.I. Musthafa, and A.K. Rahiman, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 133, p 785.

    CAS  Article  Google Scholar 

  48. 48.

    A.V. Kharcheva, N.E. Borisova, A.V. Ivanov, M.D. Reshetova, T.P. Kaminskaya, V.V. Popov, V.I. Yuzhakov, and S.V. Patsaeva, Russ. J. Inorg. Chem., 2018, 63, p 219.

    CAS  Article  Google Scholar 

  49. 49.

    R. Devi, S. Chahar, S.P. Khatkar, V.B. Taxak, and P. Boora, Inorganica Chim. Acta, 2018, 471, p 364.

    CAS  Article  Google Scholar 

  50. 50.

    F.J. Steemers, W. Verboom, D.N. Reinhoudt, E.B. van der Tol, and J.W. Verhoeven, J. Am. Chem. Soc., 1995, 117, p 9408.

    CAS  Article  Google Scholar 

  51. 51.

    M. Latva, H. Takalo, V.M. Mukkala, C. Matachescu, J.C. Rodriguez-Ubis, and J. Kankare, J. Lumin., 1997, 75, p 149.

    CAS  Article  Google Scholar 

Download references


The authors express their heartfelt gratitude to the University Grants Commission (UGC) for its monetary support under SAP (Special Assistance Programme) (No. F.540/17/DRS-I/2016 SAP-I) to Department of Chemistry, M.D.U. Rohtak.

Author information



Corresponding author

Correspondence to V. B. Taxak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 833 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khanagwal, J., Kumar, R., Bedi, M. et al. Enhanced Optoelectronic and Biological Potential of Virescent-Glowing Terbium(III) Complexes with Pyrazole Acid. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-021-08765-3

Download citation


  • Photoluminescence properties
  • free radical scavenging activity
  • optical band gap
  • energy transfer mechanism