Magnetic and Mechanical Properties of Iron-Based Soft Magnetic Composites Coated with Silane Synergized by Bi2O3

Abstract

Fe-based soft magnetic composites (SMCs) co-coated with Bi2O3 and silane, used as the low melting point binder and the insulating layer, respectively, were successfully prepared. The SMCs show improved mechanical strength, thermal stability, and insulation compared to other soft magnetic composite materials. The obtained SMCs exhibit a high Bm of 1.2607 T at 5000 A/m, 50 Hz, a high μmax of 497, and a low Pcm of 81.8 W/kg at 50 kHz and 50 mT for a completely homogeneous thin insulating coating. In addition, the transverse rupture strength of such materials is up to 81.2 MPa, which is extremely important for high-speed motors. Furthermore, the permeability and magnetic loss are stable under stress. Nonlinear curve fitting was used to build the loss model and then separated into the hysteresis loss, the eddy current loss, and the excess loss. The loss mechanism of SMCs with different coatings and micro-stress was explored and verified via this model. When compared to traditional SMCs, this material coated with Bi2O3 and silane shows a lower loss and a higher transverse rupture strength. This research expands the application fields of iron-based SMCs, especially in practical applications of soft magnetic components in high-speed motors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    BP Statistical Reviewer of World Energy 2020. ( BP Statistical Reviewer of World Energy, 2020), https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html. Accessed 28 August 2020.

  2. 2.

    J.M. Silveyra, E. Ferrara, D.L. Huber, T.C. (2018) Science, 362, 418

  3. 3.

    O. Gutfleisch, M.A. Willard, E. Bruck, C.H. Chen, S.G. Sankar, and J.P. Liu, Adv. Mater., 2011, 23, p 821.

    CAS  Article  Google Scholar 

  4. 4.

    E.A. Perigo, B. Weidenfeller, P. Kollar, and J. Fuzer, Applied Physics Reviews, 2018, 5, p 031301.

    Article  Google Scholar 

  5. 5.

    R. Bures, M. Streckova, M. Faberova, P. Kollar, and J. Fuszer, Arch. Metall. Mater., 2017, 62, p 1149.

    Article  Google Scholar 

  6. 6.

    S.L. Jiang, M. Zhao, J. Shang, J.H. Hu, C.J. Liu, B.C. Wang (2017), in IEEE Transportation Electrification Conference and Expo Asia-Pacific, p.1323.

  7. 7.

    J. Wang, X.A. Fan, Z.Y. Wu, and G.Q. Li, J. Wang, X.A. Fan, Z.Y. Wu, and G.Q. Li, J. Mater. Sci., 2017, 52, p 7091.

    CAS  Article  Google Scholar 

  8. 8.

    Z.Y. Wu, Z. Jiang, X.A. Fan, L.J. Zhou, W.L. Wang, and K. Xu, Z.Y. Wu, Z. Jiang, X.A. Fan, L.J. Zhou, W.L. Wang, and K. Xu, J. Alloy. Compd., 2018, 742, p 90.

    CAS  Article  Google Scholar 

  9. 9.

    Z. Luo, X.A. Fan, W. Hu, F. Luo, G. Li, Y. Li, X. Liu, J. Wang, Adv. Powder Technol., 2019, 30, p 538.

    CAS  Article  Google Scholar 

  10. 10.

    Y.D. Peng, J.W. Nie, W.J. Zhang, J. Ma, C.X. Bao, and Y. Cao, Y.D. Peng, J.W. Nie, W.J. Zhang, J. Ma, C.X. Bao, and Y. Cao, J. Magn. Magn. Mater., 2016, 399, p 88.

    CAS  Article  Google Scholar 

  11. 11.

    G. Azimi-Roeen, S.F. Kashani-Bozorg, M. Nosko, S. Nagy, and I. Matko, G. Azimi-Roeen, S.F. Kashani-Bozorg, M. Nosko, S. Nagy, and I. Matko, J. Mater. Eng. Perform., 2018, 27, p 6800.

    CAS  Article  Google Scholar 

  12. 12.

    J. Lei, J.W. Zheng, H.D. Zheng, L. Qiao, Y. Ying, W. Cai, W.C. Li, J. Yu, M. Lin, and S.L. Che, J. Lei, J.W. Zheng, H.D. Zheng, L. Qiao, Y. Ying, W. Cai, W.C. Li, J. Yu, M. Lin, and S.L. Che, J. Magn. Magn. Mater., 2019, 472, p 7.

    CAS  Article  Google Scholar 

  13. 13.

    K.J. Geng, Y.Y. Xie, L.L. Xu, and B. Yan, K.J. Geng, Y.Y. Xie, L.L. Xu, and B. Yan, Adv. Powder Technol., 2017, 28, p 2015.

    CAS  Article  Google Scholar 

  14. 14.

    W.C. Li, Z.J. Wang, Y. Ying, J. Yu, J.W. Zheng, L. Qiao, and S.L. Che, W.C. Li, Z.J. Wang, Y. Ying, J. Yu, J.W. Zheng, L. Qiao, and S.L. Che, Ceram. Int., 2019, 45, p 3864.

    CAS  Article  Google Scholar 

  15. 15.

    B. Zhou, Y.Q. Dong, L. Liu, L. Chang, F.Q. Bi, and X.M. Wang, B. Zhou, Y.Q. Dong, L. Liu, L. Chang, F.Q. Bi, and X.M. Wang, J. Magn. Magn. Mater., 2019, 474, p 1.

    CAS  Article  Google Scholar 

  16. 16.

    S. Mori, T. Mitsuoka, K. Sugimura, R. Hirayama, M. Sonehara, T. Sato, and N. Matsushita, S. Mori, T. Mitsuoka, K. Sugimura, R. Hirayama, M. Sonehara, T. Sato, and N. Matsushita, Adv. Powder Technol., 2018, 29, p 1481.

    CAS  Article  Google Scholar 

  17. 17.

    M.M. Zhou, Y. Han, W.W. Guan, S.J. Han, Q.S. Meng, T.T. Xu, H.L. Su, X. Guo, Z.Q. Zou, F.Y. Yang, and Y.W. Du, M.M. Zhou, Y. Han, W.W. Guan, S.J. Han, Q.S. Meng, T.T. Xu, H.L. Su, X. Guo, Z.Q. Zou, F.Y. Yang, and Y.W. Du, J. Magn. Magn. Mater., 2019, 482, p 148.

    CAS  Article  Google Scholar 

  18. 18.

    Y.T. Zhou, M.G. Wang, Y. Chi, X.J. Qu, P.C. Liu, Z.K. Zhao (2016) IEEE Trans. Magn., 52.

  19. 19.

    X. Jin, Q. Wang, W.Q. Khan, Y.Q. Li, and Z.H. Tang, X. Jin, Q. Wang, W.Q. Khan, Y.Q. Li, and Z.H. Tang, J. Alloy. Compd., 2017, 729, p 277.

    CAS  Article  Google Scholar 

  20. 20.

    B. Yang, X. Li, X. Yang, and R. Yu, B. Yang, X. Li, X. Yang, and R. Yu, J. Magn. Magn. Mater., 2017, 428, p 6.

    CAS  Article  Google Scholar 

  21. 21.

    B.Y. Meng, B. Yang, X.X. Zhang, B.H. Zhou, X.P. Li, and R.H. Yu, B.Y. Meng, B. Yang, X.X. Zhang, B.H. Zhou, X.P. Li, and R.H. Yu, Mater. Chem. Phys., 2020, 242, p 8.

    Article  Google Scholar 

  22. 22.

    W.C. Li, Y.Y. Pu, Y. Ying, Y. Kang, J. Yu, J.W. Zheng, L. Qiao, J. Li, and S.L. Che, W.C. Li, Y.Y. Pu, Y. Ying, Y. Kang, J. Yu, J.W. Zheng, L. Qiao, J. Li, and S.L. Che, J. Alloy. Compd., 2020, 829, p 8.

    Google Scholar 

  23. 23.

    J.H.J. Potgieter, F.J. Marquez-Fernandez, A.G. Fraser, and M.D. McCulloch, J.H.J. Potgieter, F.J. Marquez-Fernandez, A.G. Fraser, and M.D. McCulloch, IEEE Trans. Ind. Electron., 2017, 64, p 2486.

    Article  Google Scholar 

  24. 24.

    N. Matsumoto, T. Miyake, M. Kondoh, K. Ando, H. Tanino, in Materials Science Forum (2007), p. 265.

  25. 25.

    S. Tajima, T. Hattori, M. Kondoh, and H. Kishimoto, S. Tajima, T. Hattori, M. Kondoh, and H. Kishimoto, IEEE Trans. Magn., 2005, 1, p 3280.

    Article  Google Scholar 

  26. 26.

    W. Ding, L.T. Jiang, Y.Q. Liao, J.B. Song, B.Q. Li, and G.H. Wu, W. Ding, L.T. Jiang, Y.Q. Liao, J.B. Song, B.Q. Li, and G.H. Wu, J. Magn. Magn. Mater., 2015, 378, p 232.

    CAS  Article  Google Scholar 

  27. 27.

    W. Ding, L.T. Jiang, B.Q. Li, G.Q. Chen, S.F. Tian, and G.H. Wu, W. Ding, L.T. Jiang, B.Q. Li, G.Q. Chen, S.F. Tian, and G.H. Wu, J. Supercond. Nov. Magn, 2014, 27, p 239.

    CAS  Article  Google Scholar 

  28. 28.

    L.L. Evangelista, G. Tontini, A.I. Ramos, L.E. Machado, B.S. Silva, I.P.C. Silva, G. Hammes, R. Binder, C. Binder, N.J. Batistela, A.N. Klein, and V. Drago, L.L. Evangelista, G. Tontini, A.I. Ramos, L.E. Machado, B.S. Silva, I.P.C. Silva, G. Hammes, R. Binder, C. Binder, N.J. Batistela, A.N. Klein, and V. Drago, J. Magn. Magn. Mater., 2020, 497, p 9.

    Article  Google Scholar 

  29. 29.

    T. Takahashi, T. Nakamoto, K. Nishikawa, in US Patent,No. 9631264B2(2017).

  30. 30.

    T. Takahashi, S. Tokoro, S. Kikuchi, K. Nishikawa, in US Patent, No. 9318244 (2016).

  31. 31.

    M.V.F. Da Luz, R. Carlson, N. Sadowski, G. Hammes, V. Drago, G. Tontini, A.N. Klein, C. Binder, J.B. Rodrigues Neto, N.J. Batistela, WO2018035595A1 (2018).

  32. 32.

    C.M. Bertelsen, and F.J. Boerio, C.M. Bertelsen, and F.J. Boerio, Prog. Org. Coat., 2001, 41, p 239.

    CAS  Article  Google Scholar 

  33. 33.

    A.H. Taghvaei, H. Shokrollahi, A. Ebrahimi, and K. Janghorban, A.H. Taghvaei, H. Shokrollahi, A. Ebrahimi, and K. Janghorban, Mater. Chem. Phys., 2009, 116, p 247.

    CAS  Article  Google Scholar 

  34. 34.

    E. Ukaji, T. Furusawa, M. Sato, and N. Suzuki, E. Ukaji, T. Furusawa, M. Sato, and N. Suzuki, Appl. Surf. Sci., 2007, 254, p 563.

    CAS  Article  Google Scholar 

  35. 35.

    T. Lostak, C. Timma, S. Krebs, J. Flock, and S. Schulz, T. Lostak, C. Timma, S. Krebs, J. Flock, and S. Schulz, Surf. Coat. Technol., 2016, 305, p 223.

    CAS  Article  Google Scholar 

  36. 36.

    H. Iida, T. Nakanishi, H. Takada, and T. Osaka, H. Iida, T. Nakanishi, H. Takada, and T. Osaka, Electrochim. Acta, 2006, 52, p 292.

    CAS  Article  Google Scholar 

  37. 37.

    T. Wang, S.H. Song, Q. Ma, and S.S. Ji, T. Wang, S.H. Song, Q. Ma, and S.S. Ji, Ceram. Int., 2019, 45, p 2213.

    CAS  Article  Google Scholar 

  38. 38.

    Z.H. Dai, and Y. Akishige, Z.H. Dai, and Y. Akishige, Ceram. Int., 2012, 38, p 403.

    Article  Google Scholar 

  39. 39.

    I. Milosev, Z. Jovanovic, J.B. Bajat, R. Jancic-Heinemann, and V.B. Miskovic-Stankovic, I. Milosev, Z. Jovanovic, J.B. Bajat, R. Jancic-Heinemann, and V.B. Miskovic-Stankovic, J. Electrochem. Soc., 2012, 159, p 303.

    Article  Google Scholar 

  40. 40.

    D.A. Zatsepin, A.F. Zatsepin, D.W. Boukhvalov, and N.V. Gavrilov, D.A. Zatsepin, A.F. Zatsepin, D.W. Boukhvalov, and N.V. Gavrilov, J. Alloy. Compd., 2020, 829, p 8.

    Article  Google Scholar 

  41. 41.

    P. Andalib, and V.G. Harris, P. Andalib, and V.G. Harris, J. Alloy. Compd., 2020, 832, p 14.

    Article  Google Scholar 

  42. 42.

    Z. Bircakova, P. Kollar, J. Fuzer, M. Lauda, R. Bures, and M. Faberova, Z. Bircakova, P. Kollar, J. Fuzer, M. Lauda, R. Bures, and M. Faberova, IEEE Trans. Magn., 2014, 50, p 7.

    Article  Google Scholar 

  43. 43.

    M. Anhalt, M. Anhalt, J. Magn. Magn. Mater., 2008, 320, p 366.

    Article  Google Scholar 

  44. 44.

    P. Kollar, Z. Bircakova, V. Vojtek, J. Fuzer, R. Bures, and M. Faberova, P. Kollar, Z. Bircakova, V. Vojtek, J. Fuzer, R. Bures, and M. Faberova, J. Magn. Magn. Mater., 2015, 388, p 76.

    CAS  Article  Google Scholar 

  45. 45.

    Z. Bircakova, P. Kollar, B. Weidenfeller, J. Fuzer, M. Faberova, and R. Bures, Z. Bircakova, P. Kollar, B. Weidenfeller, J. Fuzer, M. Faberova, and R. Bures, J. Alloy. Compd., 2015, 645, p 283.

    CAS  Article  Google Scholar 

  46. 46.

    S. Kobayashi, Y. Ishibashi, and R. Baba, S. Kobayashi, Y. Ishibashi, and R. Baba, J. Magn. Magn. Mater., 2013, 330, p 49.

    CAS  Article  Google Scholar 

  47. 47.

    P. Kollar, Z. Bircakova, J. Fuzer, R. Bures, and M. Faberova, P. Kollar, Z. Bircakova, J. Fuzer, R. Bures, and M. Faberova, J. Magn. Magn. Mater., 2013, 327, p 146.

    CAS  Article  Google Scholar 

  48. 48.

    W.A. Pluta, in 19th International Conference on Soft Magnetic Materials(2010), p.322.

  49. 49.

    W.C. Li, H.W. Cai, Y. Kang, Y. Ying, J. Yu, J.W. Zheng, L. Qiao, Y. Jiang, and S.L. Che, W.C. Li, H.W. Cai, Y. Kang, Y. Ying, J. Yu, J.W. Zheng, L. Qiao, Y. Jiang, and S.L. Che, Acta Mater., 2019, 167, p 267.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant U1809215), Natural Science Foundation of Zhejiang Province (Grant LY20E020015), the Science and Technology Program of Zhejiang Province - Public Welfare Technology (LGG19E020004) and The S&T Innovation 2025 Major Special Program (Grant No. 2018B10085).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shenglei Che.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, W., Li, W., Ying, Y. et al. Magnetic and Mechanical Properties of Iron-Based Soft Magnetic Composites Coated with Silane Synergized by Bi2O3. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-021-08758-2

Download citation

Keywords

  • Insulation coating
  • soft magnetic composites
  • Bi2O3
  • silane
  • transverse rupture strength