Li6NiNb2O9 Compound with Rock-Salt Crystal Structure and Its Microwave Dielectric Properties

Abstract

A ternary compound of Li6NiNb2O9 with a rock-salt structure was prepared by the conventional mixed oxide route, and after the ceramic preparation processes, its microwave dielectric properties were investigated. Ceramics with a single phase and a rock-salt crystal structure can be obtained under our optimized sintering conditions, and a disordered rock-salt structure for Li6NiNb2O9 compound can be confirmed by the Rietveld method. Relatively dense microstructures can be obtained under the sintering conditions of 1080°C/2.0 h, with microwave dielectric properties of ε = 13.5, Q × f = 20,600 GHz (9.4 GHz) and τf = −33.9 ppm/°C. Although decomposition of such phase occurred when high sintering temperature was applied (> 1100°C), the density and microwave dielectric properties of the ceramics showed anomalous increases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    M.T. Sebastian, Dielectric materials for wireless communication, 1st edn. Elsevier Science, Oxford, 2008, p 1–10

    Google Scholar 

  2. 2.

    H. Ohsato, H. Ohsato, Ceram. Int., 2012, 38S, p S141.

    Article  Google Scholar 

  3. 3.

    M.T. Sebastian, R. Ubic, and H. Jantunen, M.T. Sebastian, R. Ubic, and H. Jantunen, Int. Mater. Rev., 2015, 60, p 392.

    Article  Google Scholar 

  4. 4.

    H. Ohsato, J. Varghese, and H. Jantunen, Dielectric losses of microwave ceramics based on crystal structure, 1st edn. IntechOpen, London, 2018, p 1–3

    Google Scholar 

  5. 5.

    L.L. Yuan, and J.J. Bian, L.L. Yuan, and J.J. Bian, Ferroelectrics, 2009, 387, p 123.

    CAS  Article  Google Scholar 

  6. 6.

    L.X. Pang, and D. Zhou, L.X. Pang, and D. Zhou, J. Am. Ceram. Soc., 2010, 93, p 3614.

    CAS  Article  Google Scholar 

  7. 7.

    Z.F. Fu, P. Liu, J.L. Ma, X.G. Zhao, and H.W. Zhang, J. Euro. Ceram. Soc., 2016, 36, p 625.

    CAS  Article  Google Scholar 

  8. 8.

    Z.F. Fu, P. Liu, J.L. Ma, B.C. Guo, X.M. Chen, and H.W. Zhang, Z.F. Fu, P. Liu, J.L. Ma, B.C. Guo, X.M. Chen, and H.W. Zhang, Mater. Res. Bull., 2016, 77, p 78.

    CAS  Article  Google Scholar 

  9. 9.

    J.X. Bi, C.F. Xing, X.S. Jiang, C.H. Yang, and H.T. Wu, J.X. Bi, C.F. Xing, X.S. Jiang, C.H. Yang, and H.T. Wu, Mater. Let., 2016, 184, p 269.

    CAS  Article  Google Scholar 

  10. 10.

    Y.X. Mao, H.L. Pan, Y.W. Zhang, Q.Q. Liu, and H.T. Wu, Y.X. Mao, H.L. Pan, Y.W. Zhang, Q.Q. Liu, and H.T. Wu, J. Mater. Sci. Mater. Electron., 2017, 28, p 13278.

    CAS  Article  Google Scholar 

  11. 11.

    L. Cheng, H.L. Pan, M.F. Li, F. Ling, and H.T. Wu, L. Cheng, H.L. Pan, M.F. Li, F. Ling, and H.T. Wu, J. Mater. Sci. Mater. Electron., 2017, 28, p 14901.

    CAS  Article  Google Scholar 

  12. 12.

    H. Yang, B. Tang, Z.X. Fang, J. Luo, and S.R. Zhang, H. Yang, B. Tang, Z.X. Fang, J. Luo, and S.R. Zhang, J. Am. Ceram. Soc., 2018, 101, p 2202.

    CAS  Article  Google Scholar 

  13. 13.

    H.H. Guo, D. Zhou, L.X. Pang, and J.Z. Su, H.H. Guo, D. Zhou, L.X. Pang, and J.Z. Su, J. Materiomics, 2018, 4, p 368.

    Article  Google Scholar 

  14. 14.

    C.J. Pei, C.D. Hou, Y. Li, G.G. Yao, Z.Y. Ren, P. Liu, and H.W. Zhang, C.J. Pei, C.D. Hou, Y. Li, G.G. Yao, Z.Y. Ren, P. Liu, and H.W. Zhang, J. Alloy Compd., 2019, 792, p 46.

    CAS  Article  Google Scholar 

  15. 15.

    H.H. Guo, D. Zhou, C. Du, P.J. Wang, W.F. Liu, L.X. Pang, Q.P. Wang, J.Z. Su, C. Singh, and S. Trukhanov, H.H. Guo, D. Zhou, C. Du, P.J. Wang, W.F. Liu, L.X. Pang, Q.P. Wang, J.Z. Su, C. Singh, and S. Trukhanov, J. Mater. Chem. C, 2020, 8, p 4690.

    CAS  Article  Google Scholar 

  16. 16.

    W.E. Courtney, W.E. Courtney, IEEE Trans. Microwave Theory Technol., 1970, 18, p 476.

    Article  Google Scholar 

  17. 17.

    M.W. Lufaso, M.W. Lufaso, Chem. Mater., 2004, 16, p 2148.

    CAS  Article  Google Scholar 

  18. 18.

    T. Joseph, and M.T. Sebastian, T. Joseph, and M.T. Sebastian, J. Am. Ceram. Soc., 2010, 93, p 147.

    CAS  Article  Google Scholar 

  19. 19.

    E.S. Kim, and C.J. Jeon, E.S. Kim, and C.J. Jeon, J. Euro. Ceram. Soc., 2010, 30, p 341.

    Article  Google Scholar 

  20. 20.

    E.S. Kim, C.J. Jeon, and P.G. Clem, E.S. Kim, C.J. Jeon, and P.G. Clem, J. Am. Ceram. Soc., 2012, 95, p 2934.

    CAS  Article  Google Scholar 

  21. 21.

    H. Luo, L. Fang, H.C. Xiang, Y. Tang, and C.C. Li, H. Luo, L. Fang, H.C. Xiang, Y. Tang, and C.C. Li, Ceram. Int., 2017, 43, p 1622.

    CAS  Article  Google Scholar 

  22. 22.

    Y.A. Alsabah, M.S. AlSalhi, A.A. Elbadawi, and E.M. Mustafa, Y.A. Alsabah, M.S. AlSalhi, A.A. Elbadawi, and E.M. Mustafa, J. Alloy Compd., 2017, 701, p 797.

    CAS  Article  Google Scholar 

  23. 23.

    S.Y. Wang, J.D. Chen, Y.J. Zhang, and Y.C. Zhang, S.Y. Wang, J.D. Chen, Y.J. Zhang, and Y.C. Zhang, J. Alloy Compd., 2019, 805, p 852.

    CAS  Article  Google Scholar 

  24. 24.

    L. Sebastian, and J. Gopalakrishnan, L. Sebastian, and J. Gopalakrishnan, J. Solid State Chem., 2003, 172, p 171.

    CAS  Article  Google Scholar 

  25. 25.

    M.V.V.M. Satya Kishore, S. Marinel, V. Pralong, V. Caignaert, S. D’Astorg, and B. Raveau, Mater. Res. Bull., 2006, 41, p 1378.

    Article  Google Scholar 

  26. 26.

    Y.W. Tseng, J.Y. Chen, Y.C. Kuo, and C.L. Huang, Y.W. Tseng, J.Y. Chen, Y.C. Kuo, and C.L. Huang, J. Alloy Compd., 2011, 509, p L308.

    CAS  Article  Google Scholar 

  27. 27.

    D. Zhou, H. Wang, L.X. Pang, X. Yao, and X.G. Wu, D. Zhou, H. Wang, L.X. Pang, X. Yao, and X.G. Wu, J. Am. Ceram. Soc., 2008, 91, p 4115.

    CAS  Article  Google Scholar 

  28. 28.

    H.F. Zhou, X.L. Chen, L. Fang, and D.J. Chu, H.F. Zhou, X.L. Chen, L. Fang, and D.J. Chu, Jpn. J. Appl. Phys., 2010, 49, p 111506.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Research and Development Program Projects of Anhui Province (201904f06020048), the Cultivation Program for the Top Innovative Talents of Colleges and Universities of Anhui Province (gxgnfx2019020), the Natural Science Foundation of Anhui Province (1808085QE141), the Open Project Program of Key Laboratory of Inorganic Functional Materials and Devices, Chinese Academy of Sciences (KLIFMD-2013-04), and the National Training Program of Innovation and Entrepreneurship for Undergraduates (201910879111).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Teng Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, T., Ni, K., Guo, Y. et al. Li6NiNb2O9 Compound with Rock-Salt Crystal Structure and Its Microwave Dielectric Properties. Journal of Elec Materi 50, 2476–2481 (2021). https://doi.org/10.1007/s11664-021-08757-3

Download citation

Keywords

  • Li6NiNb2O9
  • microwave dielectric properties
  • rock-salt structure
  • sintering