Skip to main content
Log in

Li6NiNb2O9 Compound with Rock-Salt Crystal Structure and Its Microwave Dielectric Properties

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A ternary compound of Li6NiNb2O9 with a rock-salt structure was prepared by the conventional mixed oxide route, and after the ceramic preparation processes, its microwave dielectric properties were investigated. Ceramics with a single phase and a rock-salt crystal structure can be obtained under our optimized sintering conditions, and a disordered rock-salt structure for Li6NiNb2O9 compound can be confirmed by the Rietveld method. Relatively dense microstructures can be obtained under the sintering conditions of 1080°C/2.0 h, with microwave dielectric properties of ε = 13.5, Q × f = 20,600 GHz (9.4 GHz) and τf = −33.9 ppm/°C. Although decomposition of such phase occurred when high sintering temperature was applied (> 1100°C), the density and microwave dielectric properties of the ceramics showed anomalous increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.T. Sebastian, Dielectric materials for wireless communication, 1st edn. Elsevier Science, Oxford, 2008, p 1–10

    Book  Google Scholar 

  2. H. Ohsato, H. Ohsato, Ceram. Int., 2012, 38S, p S141.

    Article  Google Scholar 

  3. M.T. Sebastian, R. Ubic, and H. Jantunen, M.T. Sebastian, R. Ubic, and H. Jantunen, Int. Mater. Rev., 2015, 60, p 392.

    Article  Google Scholar 

  4. H. Ohsato, J. Varghese, and H. Jantunen, Dielectric losses of microwave ceramics based on crystal structure, 1st edn. IntechOpen, London, 2018, p 1–3

    Google Scholar 

  5. L.L. Yuan, and J.J. Bian, L.L. Yuan, and J.J. Bian, Ferroelectrics, 2009, 387, p 123.

    Article  CAS  Google Scholar 

  6. L.X. Pang, and D. Zhou, L.X. Pang, and D. Zhou, J. Am. Ceram. Soc., 2010, 93, p 3614.

    Article  CAS  Google Scholar 

  7. Z.F. Fu, P. Liu, J.L. Ma, X.G. Zhao, and H.W. Zhang, J. Euro. Ceram. Soc., 2016, 36, p 625.

    Article  CAS  Google Scholar 

  8. Z.F. Fu, P. Liu, J.L. Ma, B.C. Guo, X.M. Chen, and H.W. Zhang, Z.F. Fu, P. Liu, J.L. Ma, B.C. Guo, X.M. Chen, and H.W. Zhang, Mater. Res. Bull., 2016, 77, p 78.

    Article  CAS  Google Scholar 

  9. J.X. Bi, C.F. Xing, X.S. Jiang, C.H. Yang, and H.T. Wu, J.X. Bi, C.F. Xing, X.S. Jiang, C.H. Yang, and H.T. Wu, Mater. Let., 2016, 184, p 269.

    Article  CAS  Google Scholar 

  10. Y.X. Mao, H.L. Pan, Y.W. Zhang, Q.Q. Liu, and H.T. Wu, Y.X. Mao, H.L. Pan, Y.W. Zhang, Q.Q. Liu, and H.T. Wu, J. Mater. Sci. Mater. Electron., 2017, 28, p 13278.

    Article  CAS  Google Scholar 

  11. L. Cheng, H.L. Pan, M.F. Li, F. Ling, and H.T. Wu, L. Cheng, H.L. Pan, M.F. Li, F. Ling, and H.T. Wu, J. Mater. Sci. Mater. Electron., 2017, 28, p 14901.

    Article  CAS  Google Scholar 

  12. H. Yang, B. Tang, Z.X. Fang, J. Luo, and S.R. Zhang, H. Yang, B. Tang, Z.X. Fang, J. Luo, and S.R. Zhang, J. Am. Ceram. Soc., 2018, 101, p 2202.

    Article  CAS  Google Scholar 

  13. H.H. Guo, D. Zhou, L.X. Pang, and J.Z. Su, H.H. Guo, D. Zhou, L.X. Pang, and J.Z. Su, J. Materiomics, 2018, 4, p 368.

    Article  Google Scholar 

  14. C.J. Pei, C.D. Hou, Y. Li, G.G. Yao, Z.Y. Ren, P. Liu, and H.W. Zhang, C.J. Pei, C.D. Hou, Y. Li, G.G. Yao, Z.Y. Ren, P. Liu, and H.W. Zhang, J. Alloy Compd., 2019, 792, p 46.

    Article  CAS  Google Scholar 

  15. H.H. Guo, D. Zhou, C. Du, P.J. Wang, W.F. Liu, L.X. Pang, Q.P. Wang, J.Z. Su, C. Singh, and S. Trukhanov, H.H. Guo, D. Zhou, C. Du, P.J. Wang, W.F. Liu, L.X. Pang, Q.P. Wang, J.Z. Su, C. Singh, and S. Trukhanov, J. Mater. Chem. C, 2020, 8, p 4690.

    Article  CAS  Google Scholar 

  16. W.E. Courtney, W.E. Courtney, IEEE Trans. Microwave Theory Technol., 1970, 18, p 476.

    Article  Google Scholar 

  17. M.W. Lufaso, M.W. Lufaso, Chem. Mater., 2004, 16, p 2148.

    Article  CAS  Google Scholar 

  18. T. Joseph, and M.T. Sebastian, T. Joseph, and M.T. Sebastian, J. Am. Ceram. Soc., 2010, 93, p 147.

    Article  CAS  Google Scholar 

  19. E.S. Kim, and C.J. Jeon, E.S. Kim, and C.J. Jeon, J. Euro. Ceram. Soc., 2010, 30, p 341.

    Article  Google Scholar 

  20. E.S. Kim, C.J. Jeon, and P.G. Clem, E.S. Kim, C.J. Jeon, and P.G. Clem, J. Am. Ceram. Soc., 2012, 95, p 2934.

    Article  CAS  Google Scholar 

  21. H. Luo, L. Fang, H.C. Xiang, Y. Tang, and C.C. Li, H. Luo, L. Fang, H.C. Xiang, Y. Tang, and C.C. Li, Ceram. Int., 2017, 43, p 1622.

    Article  CAS  Google Scholar 

  22. Y.A. Alsabah, M.S. AlSalhi, A.A. Elbadawi, and E.M. Mustafa, Y.A. Alsabah, M.S. AlSalhi, A.A. Elbadawi, and E.M. Mustafa, J. Alloy Compd., 2017, 701, p 797.

    Article  CAS  Google Scholar 

  23. S.Y. Wang, J.D. Chen, Y.J. Zhang, and Y.C. Zhang, S.Y. Wang, J.D. Chen, Y.J. Zhang, and Y.C. Zhang, J. Alloy Compd., 2019, 805, p 852.

    Article  CAS  Google Scholar 

  24. L. Sebastian, and J. Gopalakrishnan, L. Sebastian, and J. Gopalakrishnan, J. Solid State Chem., 2003, 172, p 171.

    Article  CAS  Google Scholar 

  25. M.V.V.M. Satya Kishore, S. Marinel, V. Pralong, V. Caignaert, S. D’Astorg, and B. Raveau, Mater. Res. Bull., 2006, 41, p 1378.

    Article  Google Scholar 

  26. Y.W. Tseng, J.Y. Chen, Y.C. Kuo, and C.L. Huang, Y.W. Tseng, J.Y. Chen, Y.C. Kuo, and C.L. Huang, J. Alloy Compd., 2011, 509, p L308.

    Article  CAS  Google Scholar 

  27. D. Zhou, H. Wang, L.X. Pang, X. Yao, and X.G. Wu, D. Zhou, H. Wang, L.X. Pang, X. Yao, and X.G. Wu, J. Am. Ceram. Soc., 2008, 91, p 4115.

    Article  CAS  Google Scholar 

  28. H.F. Zhou, X.L. Chen, L. Fang, and D.J. Chu, H.F. Zhou, X.L. Chen, L. Fang, and D.J. Chu, Jpn. J. Appl. Phys., 2010, 49, p 111506.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Research and Development Program Projects of Anhui Province (201904f06020048), the Cultivation Program for the Top Innovative Talents of Colleges and Universities of Anhui Province (gxgnfx2019020), the Natural Science Foundation of Anhui Province (1808085QE141), the Open Project Program of Key Laboratory of Inorganic Functional Materials and Devices, Chinese Academy of Sciences (KLIFMD-2013-04), and the National Training Program of Innovation and Entrepreneurship for Undergraduates (201910879111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, T., Ni, K., Guo, Y. et al. Li6NiNb2O9 Compound with Rock-Salt Crystal Structure and Its Microwave Dielectric Properties. J. Electron. Mater. 50, 2476–2481 (2021). https://doi.org/10.1007/s11664-021-08757-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08757-3

Keywords

Navigation