Influence of Temperature and Thickness on the Thermoelectric Power of Nanocrystalline Na-DDQ Thin Film and Its Diode Application


Sodium-2,3-dicyano-5,6-dichloro-1,4-benzo-quinone, Na-DDQ in thin film form was synthesized using thermal evaporation onto glass fiber and p-Si single crystal substrates to measure thermoelectric properties and current–voltage (IV) characterization of a Au/n-NaDDQ/p-Si/Al device, respectively. The thermoelectric power of different Na-DDQ film thicknesses were obtained at different temperatures using the differential method. Subsequently, the thermoelectric parameters such as Seeback coefficient (S), charge carrier mobility (μ), charge carrier concentration (n) and activation energy (ΔE) were extracted. In addition, for application, the current–voltage (IV) characterization in forward and reverse bias and its temperature reliance of the Au/n-NaDDQ/p-Si/Al device in dark environment were studied. Therefore, this allows the calculation of some crucial parameters of device fabrication such as series and shunt resistance (Rs, Rsh), quality factor (m) and height of the potential barrier (φ). Furthermore, in a dim chamber the capacitance–voltage (CV) characteristics were investigated at room temperature to evaluate the junction built-in potential at 1 MHz of the Au/n-NaDDQ/p-Si/Al device.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10


  1. 1.

    Y. Zhang, Y. Xichuan, W. Wang, X. Wang, and L. Sun, J. Energy Chem. 27(2), 413 (2018).

    Article  Google Scholar 

  2. 2.

    L. Chen, S. Liu, L. Zhao, and Y. Zhao, Electrochim. Acta 258, 677 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    Y. Hanyu and I. Honma, J. Mater. Chem. 21, 9154 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    V. Ganesan, S. Rosokha, and J. Kochi, J. Am. Chem. Soc. 125, 2559 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    S. Mohamud, V. Phuoc, L. Campo, N. Massa, and S. Pagola, Synth. Met. 214, 71 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    A. Li, X. Miao, and X. Deng, Synth. Met. 168, 43 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    W.M. Desoky, M.S. Dawood, and M.M. El-Nahass, Optik 178, 351 (2019).

    CAS  Article  Google Scholar 

  8. 8.

    Z. Zhou, K. Chen, X. Li, S. Zhang, Y. Wu, Y. Zhou, K. Meng, C. Sun, Q. He, W. Fan, E. Fan, Z. Lin, X. Tan, W. Deng, J. Yang, and J. Chen, Nat. Electron. 3, 571 (2020).

    Article  Google Scholar 

  9. 9.

    H. Yin, K. Hui, X. Zhao, S. Mei, X. Lv, K. Hui, J. Chen, and A.C.S. Appl, H. Yin, K. Hui, X. Zhao, S. Mei, X. Lv, K. Hui, and J. Chen, ACS Appl. Energy Mater. 3(7), 6897 (2020).

    CAS  Article  Google Scholar 

  10. 10.

    G. Zan, T. Wu, P. Hu, Y. Zhou, S. Zhao, S. Xu, J. Chen, Y. Cui, and Q. Wu, Energy Storage Mater. 28, 82 (2020).

    Article  Google Scholar 

  11. 11.

    L. Lv, D. Zha, Y. Ruan, Z. Li, X. Ao, J. Zheng, J. Jiang, H. Chen, W. Chiang, J. Chen, and C. Wang, ACS Nano 12, 3042 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    W. Hengjia, Z. Songlin, C. Weiwei, B. Xu, C. Zhixiang, Y. Wu, X. Luo, X. Wei, Z. Liu, W. Gu, E. Alexander, Z. Chengzhou, and J. Chen, Mater. Horiz. 7, 2407 (2020).

    Article  Google Scholar 

  13. 13.

    Y. Su, T. Yang, X. Zhao, Z. Cai, G. Chen, M. Yao, K. Chen, M. Bick, J. Wang, S. Li, G. Xie, H. Tai, X. Du, Y. Jiang, and J. Chen, Nano Energy 74, 104941 (2020).

    CAS  Article  Google Scholar 

  14. 14.

    C. Zou, Y. Liu, D. Ginger, and L. Lin, ACS Nano 14, 6076 (2020).

    CAS  Article  Google Scholar 

  15. 15.

    K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, Chem. Rev. 107, 1233 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    Y. Watanabe, H. Sasabe, and J. Kido, Bull. Chem. Soc. Jpn. 92, 716 (2019).

    CAS  Article  Google Scholar 

  17. 17.

    D. Ravinder, G. Kumar, and Y. Venudhar, J. Alloys Comp. 363, 6 (2004).

    CAS  Article  Google Scholar 

  18. 18.

    M.M. El-Nahass, A.A. Attia, H.A.M. Ali, G.F. Salem, and M.I. Ismail, Chaos Solitons Fractals 95, 52 (2017).

    Article  Google Scholar 

  19. 19.

    W.M. Desoky, M.S. Dawood, and M.M. El-Nahass, Optik 182, 1053 (2019)

  20. 20.

    H.S. Soliman, A.M.A. El-Barry, N.M. Khosifan, and M.M. El Nahass, Eur. Phys. J. Appl. Phys. 37, 1 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    R.T. Weitz, S. Rauschenbach, A. Forment-Aliaga, M. Burghard, and K. Kern, Phys. Stat. Sol. b 244, 4346 (2007).

    CAS  Article  Google Scholar 

  22. 22.

    D. Ravinder, Mater. Lett. 44, 130 (2000).

    CAS  Article  Google Scholar 

  23. 23.

    H.E. Atyia and A.M.A. El-Barry, Chalcogenide Lett. 3, 41 (2006).

    CAS  Google Scholar 

  24. 24.

    Z.H. Khan, M. Zulfequar, M. Ilyas, and M. Husain, Acta. Phys. Pol. A 98, 93 (2000).

    CAS  Article  Google Scholar 

  25. 25.

    V. Patil, P. Joshi, M. Chougule, and S. Sen, Soft Nanosci. Lett. 2, 1 (2012).

    Article  Google Scholar 

  26. 26.

    M.M. El-Nahass, H.M. Zeyada, and A.A. Hendi, Eur. Phys. J. Appl. Phys. 25, 85 (2004).

    CAS  Article  Google Scholar 

  27. 27.

    M.M. El-Nahass and W.M. Desoky, Optik 171, 44 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    M.A. Lampert, Rep. Prog. Phys. 27, 329 (1964).

    CAS  Article  Google Scholar 

  29. 29.

    R. Ao, L. Kilmmert, and D. Haarer, Adv. Mater. 7, 495 (1995).

    CAS  Article  Google Scholar 

  30. 30.

    M.M. El-Nahass, M.A. Kamel, A.A. Atta, and S.Y. Huthaily, Mater. Chem. Phys. 137, 716 (2013).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to W. M. Desoky.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Desoky, W.M., El-Nahass, M.M. & Dawood, M.S. Influence of Temperature and Thickness on the Thermoelectric Power of Nanocrystalline Na-DDQ Thin Film and Its Diode Application. Journal of Elec Materi (2021).

Download citation


  • Thermoelectric properties
  • metal–organic mobility
  • metal–organic junction properties
  • metal–organic thin film and Na-DDQ