Influence of As+ Ion Implantation on Properties of MBE HgCdTe Near-Surface Layer Characterized by Metal–Insulator–Semiconductor Techniques

Abstract

The effect of As+ ion implantation on the electrical properties of the near-surface layer of n-HgCdTe films grown by molecular beam epitaxy (MBE) on Si (310) substrates was experimentally studied. A specific feature of MBE n-Hg0.78Cd0.22Te films is the presence of near-surface graded-gap layers with a high CdTe content, formed during epitaxial growth. The properties of as-grown films and films after As+ ion implantation with ion energy of 200 keV and fluence of 1014 cm−2 were studied. Post-implantation activation annealing was not performed. Test metal–insulator–semiconductor (MIS) structures were created based on as-grown and as-implanted samples by plasma-enhanced atomic layer deposition of Al2O3 insulator films. The admittance of the fabricated MIS structures was measured over a wide range of frequencies and temperatures. When determining the parameters of MIS structures, we used techniques that take into account the presence of near-surface graded-gap layers and series resistance of the HgCdTe film bulk, as well as the high density of slow surface states. It was found that, in as-implanted samples, the donor center concentration in the near-surface layer exceeds 1017 cm−3 and increases with distance from the HgCdTe-Al2O3 interface (at least up to 90 nm). After implantation, the conductivity of MBE HgCdTe film bulk increases markedly. It was shown that, for as-implanted samples, the generation rate of minority charge carriers in the MBE HgCdTe surface layer is significantly reduced, which indicates the appearance of a low defect layer with a thickness of at least 90 nm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    A. Rogalski, Infrared and Terahertz Detectors, 3rd edn (Boca Raton: CRC, 2019).

    Google Scholar 

  2. 2.

    W. Lei, J. Antoszewski, and L. Faraone, Appl. Phys. Rev. 2, 041303 (2015).

    Article  Google Scholar 

  3. 3.

    T.J. De Lyon, J.E. Jensen, M.D., Gorwitz, C.A. Cockrum, S.M. Johnson, and G..M. Venzor, J. Electron. Mater. 28, 705 (1999).

  4. 4.

    D.D. Edwall, J.S. Chen, J. Bajaj, and E.R. Gertner, Semicond. Sci. Technol. 5, S221 (1990).

    CAS  Article  Google Scholar 

  5. 5.

    M.B. Reine and M.B. Reine, Proc. SPIE 4288, 266 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    L. Mollard, G. Bourgeois, C. Lobre, S. Gout, S. Viollet-Bosson, N. Baier, G. Destefanis, O. Gravrand, J.P. Barnes, F. Milesi, A. Kerlain, L. Rubaldo, and A. Manissadjian, J. Electron. Mater. 43, 802 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    A. Kerlain, A. Brunner, D. Sam-Giao, N. Pére-Laperne, L. Rubaldo, V. Destefanis, F. Rochette, and C. Cervera, J. Electron. Mater. 45, 4557 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    W. Qiu, W. Hu, C. Lin, X. Chen, and W. Lu, Opt. Lett. 41, 828 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    L. Mollard, G. Destefanis, N. Baier, J. Rothman, P. Ballet, J.P. Zanatta, M. Tchagaspanian, A.M. Papon, G. Bourgeois, J.P. Barnes, C. Pautet, and P. Fougères, J. Electron. Mater. 38, 1805 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    L.O. Bubulac, D.S. Lo, W.E. Tennant, D.D. Edwall, J.C. Chen, J. Ratusnik, J.C. Robinson, and G. Bostrup, Appl. Phys. Lett. 50, 1586 (1987).

    CAS  Article  Google Scholar 

  11. 11.

    L.O. Bubulac, and C.R. Viswanathan, J. Cryst. Growth 123, 555 (1992).

    CAS  Article  Google Scholar 

  12. 12.

    I.I. Izhnin, A.V. Voitsekhovsky, A.G. Korotaev, O.I. Fitsych, A.Y. Bonchyk, H.V. Savytskyy, K.D. Mynbaev, V.S. Varavin, S.A. Dvoretsky, N.N. Mikhailov, M.V. Yakushev, and R. Jakiela, Infrared Phys. Technol. 81, 52 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    C. Lobre, D. Jalabert, I. Vickridge, E. Briand, D. Benzeggouta, L. Mollard, P. H. Jouneau, and P. Ballet, Nucl. Instrum. Methods Phys. Res. Sect. B 313, 76 (2013).

  14. 14.

    C. Lobre, P.H. Jouneau, L. Mollard, and P. Ballet, J. Electron. Mater. 43, 2908 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    A.G.. Korotaev, I.I. Izhnin, K.D. Mynbaev, A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, O.I. Fitsych, V.S. Varavin, S.A. Dvoretsky. N.N. Mikhailov, M.V. Yakushev, O.Yu. Bonchyk, H.V. Savytsky. Z. Swiatek, J. Morgiel, and M.V. Yakushev, Surf. Coat. Technol. 393, 125721 (2020).

  16. 16.

    O.Y. Bonchyk, H.V. Savytskyy, Z. Swiatek, Y. Morgiel, I.I. Izhnin, A.V. Voitsekhovskii, A.G. Korotaev, K.D. Mynbaev, O.I. Fitsych, V.S. Varavin, S.A. Dvoretsky, D.V. Marin, and M.V. Yakushev, Appl. Nanosci. 9, 725 (2019).

    CAS  Article  Google Scholar 

  17. 17.

    C. Shi, C. Lin, Y. Wei, and L. Chen, Proc. SPIE 10177, 101771C (2017).

    Article  Google Scholar 

  18. 18.

    H.R. Vydyanath, and C.H. Hiner, J. Appl. Phys. 65, 3080 (1989).

    CAS  Article  Google Scholar 

  19. 19.

    H.R. Vydyanath, J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. – Process., Meas., Phenom 9, 1716 (1991).

  20. 20.

    H.R. Vydyanath and H.R. Vydyanath, J. Cryst Growth 161, 64 (1996).

    CAS  Article  Google Scholar 

  21. 21.

    S.A. Dvoretsky, V.S. Varavin, N.N. Mikhailov, Y.G. Sidorov, T.I. Zakharyash, V.V. Vasiliev, V.N. Ovsyuk, G.V. Chekanova, M.S. Nikitin, IYu. Lartsev, and A.L. Aseev, Proc. SPIE 5964, 9640A (2005).

    Article  Google Scholar 

  22. 22.

    E.H. Nicollian, and J.R. Brews, MOS Physics and Technology (New York: Wiley, 1982).

    Google Scholar 

  23. 23.

    S. Hlali, A. Farji, N. Hizem, L. Militaru, A. Kalboussi, and A. Souifi, J. Alloys Compd. 713, 194 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, V.S. Varavin, S.A. Dvoretsky, N.N., Mikhailov, G.Yu. Sidorov, M.V. Yakushev, and D.V. Marin, J. Electron. Mater. 49, 3202 (2020).

  25. 25.

    I.I. Izhnin, K.D. Mynbaev, A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, A.G. Korotaev, V.S. Varavin, S.A. Dvoretsky, D.V. Marin, M.V. Yakushev, Z. Swiatek, J. Morgiel, and O.Yu. Bonchyk, Semicond. Sci. Technol. 35, 115019 (2020). https://doi.org/10.1088/1361-6641/ab924e.

    CAS  Article  Google Scholar 

  26. 26.

    A.G. Korotaev, A.V. Voitsekhovskii, I.I. Izhnin, K.D. Mynbaev, S.N. Nesmelov, S.M. Dzyadukh, V.S. Varavin, S.A. Dvoretsky, N.N. Mikhailov, M.V. Yakushev, and GYu. Sidorov, Surf. Coat. Technol. 392, 125760 (2020).

    CAS  Article  Google Scholar 

  27. 27.

    A.V. Voitsekhovskii, S.N. Nesmelov, and S.M. Dzyadukh, J. Electron. Mater. 47, 2694 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    A.V. Voitsekhovskii, S.N. Nesmelov, and S.M. Dzyadukh, J. Phys. Chem. Sol. 102, 42 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, V.S. Varavin, S.A. Dvoretsky, N.N. Mikhailov, M.V. Yakushev, and G.Y. Sidorov, Vacuum 158, 136 (2018).

    CAS  Article  Google Scholar 

  30. 30.

    Y.G. Sidorov, S.A. Dvoretskii, V.S. Varavin, N.N. Mikhailov, M.V. Yakushev, and I.V. Sabinina, Semiconductors 35, 1045 (2001).

    CAS  Article  Google Scholar 

  31. 31.

    R. Fu, J. Pattison, A. Chen, and O. Nayfeh, Proc. SPIE 8353, 83532I (2012).

    Article  Google Scholar 

  32. 32.

    P. Zhang, Z.-H. Ye, C.-H. Sun, Y.-Y. Chen, T.-N. Zhang, X. Chen, C. Lin, R.-J. Ding, and L. He, J. Electron. Mater. 45, 4716 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    E.R. Zakirov, V.G. Kesler, G.Y. Sidorov, I.P. Prosvirin, A.K., Gutakovsky, and V.I. Vdovin, Semicond. Sci. Technol. 34, 065007 (2019).

  34. 34.

    E.R. Zakirov, V.G. Kesler, GYu. Sidorov, and A.P. Kovchavtsev, Semicond. Sci. Technol. 35, 025019 (2020).

    CAS  Article  Google Scholar 

  35. 35.

    A.V. Voitsekhovkii, S.N. Nesmelov, and S.M. Dzyadukh, Russ. Phys. J. 52, 1003 (2009).

    CAS  Article  Google Scholar 

  36. 36.

    A.V. Voitsekhovkii, S.N. Nesmelov, and S.M. Dzyadukh, Opto-Electron. Rev. 22, 236 (2014).

    Google Scholar 

  37. 37.

    A.V. Voitsekhovkii, S.N. Nesmelov, and S.M. Dzyadukh, Russ. Phys. J. 48, 584 (2005).

    Article  Google Scholar 

  38. 38.

    A.V. Voitsekhovkii, N.A. Kulchitsky, S.N. Nesmelov, and S.M. Dzyadukh, J. Comm. Technol. Electron. 63, 1112 (2018).

    Article  Google Scholar 

  39. 39.

    A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, V.V. Vasilev, V.S. Varavin, S.A. Dvoretsky, N.N. Mikhailov, M.V. Yakushev, and G.Y. Sidorov, , Phys. Stat. Sol. (c) 13, 647 (2016).

    CAS  Article  Google Scholar 

  40. 40.

    A.P. Kovchavtsev, G.Y. Sidorov, A.E. Nastovjak, A.V. Tsarenko, I.V. Sabinina, and V.V. Vasilyev, J. Appl. Phys. 121, 125304 (2017).

    Article  Google Scholar 

  41. 41.

    S.M. Sze, and K.K. Ng, Physics of Semiconductor Devices, 3rd edn (New Jersey: Wiley, 2007).

    Google Scholar 

  42. 42.

    W. Van Gelder, and E.H. Nicollian, J. Electrochem. Soc. 118, 138 (1971).

    Article  Google Scholar 

  43. 43.

    T. Nakagawa, and H. Fujisada, Appl. Phys. Lett. 31, 348 (1977).

    CAS  Article  Google Scholar 

  44. 44.

    I.I. Izhnin, I.I. Syvorotka, O.I. Fitsych, V.S. Varavin, S.A. Dvoretsky, D.V. Marin, N.N. Mikhailov, V.G. Remesnik, M.V. Yakushev, K.D. Mynbaev, A.V. Voitsekhovsky, and A.G. Korotaev, Semicond. Sci. Technol. 34, 035009 (2019).

    CAS  Article  Google Scholar 

  45. 45.

    G.A. Umana-Membreno, H. Kala, J. Antoszewski, Z.H. Ye, W.D. Hu, R.J. Ding, X.S. Chen, W. Lu, L. He, J.M. Dell, and L. Faraone, J. Electron. Mater. 42, 3108 (2013).

    CAS  Article  Google Scholar 

  46. 46.

    J.R. Brews and J.R. Brews, J. Appl. Phys. 44, 3228 (1973).

    Article  Google Scholar 

  47. 47.

    OYu. Bonchyk, H.V. Savytskyy, I.I. Izhnin, K.D. Mynbaev, I.I. Syvorotka, A.G. Korotaev, A.V. Voitsekhovskii, O.I. Fitsych, V.S. Varavin, D.V. Marin, N.N. Mikhailov, M.V. Yakushev, Z. Swiatek, J. Morgiel, R. Jakiela, Appl. Nanosci. 10, 4971 (2020). https://doi.org/10.1007/s13204-020-01327-9.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Ministry of Science and Higher Education of the Russian Federation, Project No. 0721-2020-0038.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. N. Nesmelov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Voitsekhovskii, A.V., Nesmelov, S.N., Dzyadukh, S.M. et al. Influence of As+ Ion Implantation on Properties of MBE HgCdTe Near-Surface Layer Characterized by Metal–Insulator–Semiconductor Techniques. Journal of Elec Materi 50, 2323–2330 (2021). https://doi.org/10.1007/s11664-021-08752-8

Download citation

Keywords

  • Mercury cadmium telluride
  • molecular beam epitaxy
  • graded-gap layer
  • ion implantation
  • MIS structure
  • admittance