Structural, Morphological and Sensor Properties of the Fractal-Percolation Nanosystem ZnO/NiO

Abstract

ZnO/NiO fractal-percolation nanosystems have been sensitized using a newly developed three-step technology. During the first stage, ionically sputtered Zn vapors have been deposited under near-equilibrium condensation conditions. In the second stage, Zn layers have been oxidized in air atmosphere, and during the final stage, a NiO layer has been deposited onto the ZnO surface using reactive magnetron sputtering. Gas sensor tests have been performed by measuring current–voltage characteristics of the fractal-percolation nanosystems in air containing methanol or methane. It has been shown that the shape of the IV curve depends on the reactive gas nature, rendering the possibility to differentiate between different gases, which is an important step to increase sensor selectivity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5.
Fig 6.
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    V. Kobrinsky, A. Rothschild, V. Lumelsky, Y. Komem, and Y. Lifshitz, Appl. Phys. Lett., 2008, 93, p 113502.

    Article  Google Scholar 

  2. 2.

    C. Xie, L. Yang, S. Zhang, and X. Yu, Sens. Actuators B, 2014, 195, p 439.

    Article  Google Scholar 

  3. 3.

    Y. Zhang, Appl. Surf. Sci., 2015, 344, p 33–37.

    CAS  Article  Google Scholar 

  4. 4.

    X. Zhang, Z. Dong, S. Liu, Y. Shi, Y. Dong, and W. Feng, Sens. Actuators B, 2017, 243, p 1224.

    CAS  Article  Google Scholar 

  5. 5.

    X.L. Xu, Y. Chen, S.Y. Ma, W.Q. Li, and Y.Z. Mao, Sens. Actuators B, 2015, 213, p 222.

    CAS  Article  Google Scholar 

  6. 6.

    X. Deng, L. Zhang, J. Guo, Q. Chen, and J. Ma, Mater. Res. Bull., 2017, 90, p 170.

    CAS  Article  Google Scholar 

  7. 7.

    G. Kavitha, K. Thanigai Arul, and P. Babu, J. Mater. Sci. Mater. Electron., 2018, 29, p 6666.

    CAS  Article  Google Scholar 

  8. 8.

    T. Kunt, T.J. McAvoy, R.E. Cavicchi, and S. Semancik, Proc. ADCHEM, 1997, 1997, p 91.

    Google Scholar 

  9. 9.

    Z.H. Lim, Z.X. Chia, M. Kevin, A.S.W. Wong, and G.W. Ho, Sens. Actuators B, 2010, 151, p 121.

    CAS  Article  Google Scholar 

  10. 10.

    C. Wang, X. Chu, and M. Wu, Sens. Actuators B, 2006, 113, p 320.

    CAS  Article  Google Scholar 

  11. 11.

    V.I. Perekrestov, A.S. Kornyushchenko, and V.M. Latyshev, J. Electron. Mater. J. Electr. Mater., 2019, 48, p 2788.

    CAS  Article  Google Scholar 

  12. 12.

    V.I. Perekrestov, A.I. Olemskoi, Y.O. Kosminska, and A.A. Mokrenko, Phys. Lett. A., 2009, 373, p 3386.

    CAS  Article  Google Scholar 

  13. 13.

    A.S. Kornyushchenko, A.H. Jayatissa, V.V. Natalich, and V.I. Perekrestov, Thin Solid Films, 2016, 604, p 48.

    CAS  Article  Google Scholar 

  14. 14.

    H.Q. Ni, Y.F. Lu, Z.Y. Liu, H. Qiu, W.J. Wang, Z.M. Ren, S.K. Chow, and Y.X. Jie, Appl. Phys. Lett., 2001, 79, p 812.

    CAS  Article  Google Scholar 

  15. 15.

    C.W. Na, H.-S. Woo, J.-H. Lee, Proc. of IMCS, 2012, 2012, p 694

    Google Scholar 

  16. 16.

    A.S. Kornyushchenko, V.V. Natalich, S.T. Shevchenko, in 2019 IEEE 9th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2019.

  17. 17.

    C. Liu, L. Zhao, B. Wang, P. Sun, Q. Wang, Y. Gao, X. Liang, T. Zhang, and G. Lu, J. Colloid Interfaces Sci., 2017, 495, p 207.

    CAS  Article  Google Scholar 

  18. 18.

    T. Guo, Y. Luo, Y. Zhang, Y.-H. Lin, and C.-W. Nan, J. Appl. Phys., 2014, 116, p 044309.

    Article  Google Scholar 

  19. 19.

    X. Kaikai, Phys. Status Solidi A, 2019, 216, p 1800868.

    Article  Google Scholar 

  20. 20.

    S.Y. Yurish, ed., Book Series: Advances in Sensors: Reviews, vol. 2, (International Frequency Sensor Association Publishing, 2013), p. 480.

Download references

Acknowledgments

Anna Kornyushchenko thanks the Humboldt Foundation for a research fellowship that allowed her to carry out investigations in the Institute of Materials Physics, University of Muenster, Germany. The work was also supported by the Ministry of Science and Education of Ukraine within the research Grant Number 0119U100763.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anna Kornyushchenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kornyushchenko, A., Kosminska, Y., Stas, S. et al. Structural, Morphological and Sensor Properties of the Fractal-Percolation Nanosystem ZnO/NiO. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-021-08749-3

Download citation

Keywords

  • ZnO
  • NiO nanostructures
  • gas sensor
  • current–voltage characteristics
  • charge transfer
  • reducing gas