Magnetic Properties of Iron-Based Alloy Powder Coils Prepared with Screen Printing Using High-Solid-Content Magnetic Pastes

Abstract

A molding coil is prepared by filling and dry pressing granulated alloy magnetic powders directly onto enameled wire. As the molding coil is developed toward miniaturization, the granules consisting of magnetic powder and organic binder cannot uniformly fill the small space in the coil center column during molding. This leads to a porous microstructure or cracks. The uneven packing problem in the coil center column was effectively solved in this study by applying a screen printing process using high-solid-content magnetic pastes. Bisphenol A epoxy resin has the benefits of excellent mechanical, bonding, electrical, corrosion resistance, low shrinkage and low cost properties. However, the viscosity is too high for use as a binder for high-solid-content magnetic paste. The magnetic paste viscosity can be reduced by substituting some low viscosity reactive diluent (butyl glycidyl ether) for Bisphenol A epoxy resin. It was observed that the relative density and magnetic properties (such as initial permeability, saturation magnetization, and core loss) can be effectively improved by increasing the monomer addition because the monomer acts as a lubricant that helps the magnetic particles rearrange during compaction. However, as monomer addition becomes greater than half the epoxy resin weight percent, the sample bending strength decreases.

This is a preview of subscription content, access via your institution.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    H.I. Hsiang, L.F. Fan, and K.T. Ho, H.I. Hsiang, L.F. Fan, and K.T. Ho, Minor yttrium addition effect on FeSiCr alloy powder core electromagnetic properties J. Magn. Magn. Mater., 2017, 444, p 1–6.

    CAS  Article  Google Scholar 

  2. 2.

    H.I. Hsiang, L.F. Fan, and K.T. Ho, H.I. Hsiang, L.F. Fan, and K.T. Ho, Relationship between the microstructure and magnetic properties of Fe-Si-Cr powder cores IEEE Tran. Magn., 2018, 54, p 2000407.

    Article  Google Scholar 

  3. 3.

    Y.P. Wu, H.Y. Chiang, and H.I. Hsiang, Y.P. Wu, H.Y. Chiang, and H.I. Hsiang, Interactions between silver inner electrode and Fe-Si-Cr alloy of metal multilayer chip inductors AIP Adv., 2018, 8, p 085006.

    Article  Google Scholar 

  4. 4.

    Y.P. Wu, H.Y. Chiang, and H.I. Hsiang, Y.P. Wu, H.Y. Chiang, and H.I. Hsiang, AgCrO2 formation mechanism during silver inner electrodeand Fe-Si-Cr alloy powder co-firing in metal multilayer chip power inductors J. Mater. Sci. Mater. Electron., 2019, 30, p 8080–8088.

    CAS  Article  Google Scholar 

  5. 5.

    H.I. Hsiang, L.F. Fan, and J.J. Hung, H.I. Hsiang, L.F. Fan, and J.J. Hung, Effects of the sodium stearate addition on the corrosion resistance and electromagnetic properties of phosphatized iron-based SMCs J. Magn. Magn. Mater., 2019, 490, p 165532.

    CAS  Article  Google Scholar 

  6. 6.

    H.I. Hsiang, L.F. Fan, and J.J. Hung, H.I. Hsiang, L.F. Fan, and J.J. Hung, Phosphoric acid addition effect on the microstructure and magnetic properties of iron-based soft magnetic composites J. Magn. Magn. Mater., 2018, 447, p 1–8.

    CAS  Article  Google Scholar 

  7. 7.

    L.F. Fan, H.I. Hsiang, and J.J. Hung, L.F. Fan, H.I. Hsiang, and J.J. Hung, Silane surface modification effects on the electromagnetic properties of phosphatized iron-based SMCs Appl. Surf. Sci., 2018, 433, p 133–138.

    CAS  Article  Google Scholar 

  8. 8.

    W.S. Chen, Y.L. Chang, H.I. Hsiang, F.C. Hsu, Y.H. Shen, and F.S. Yen, W.S. Chen, Y.L. Chang, H.I. Hsiang, F.C. Hsu, Y.H. Shen, and F.S. Yen, Mechanical and dielectric properties of NiZn ferrite powders-CTBN modified epoxy resin coatings Polym. Plast. Tech. Eng., 2011, 50, p 568–572.

    CAS  Article  Google Scholar 

  9. 9.

    J.E. Yoo, and Y.M. Kang, J.E. Yoo, and Y.M. Kang, Electromagnetic wave absorbing properties of Ni-Zn ferrite powder–epoxy composites in GHz range J. Magn. Magn. Mater., 2020, 513, p 167075.

    CAS  Article  Google Scholar 

  10. 10.

    W.S. Chen, Y.L. Chang, H.I. Hsiang, F.C. Hsu, and F.S. Yen, W.S. Chen, Y.L. Chang, H.I. Hsiang, F.C. Hsu, and F.S. Yen, Effects of titanate coupling agent on the dielectric properties of NiZn ferrite powders-epoxy resin coatings Ceram. Int., 2011, 37, p 2347–2352.

    CAS  Article  Google Scholar 

  11. 11.

    S. Lin, B. Bulkin, and E. Pearce, S. Lin, B. Bulkin, and E. Pearce, Epoxy resins. III. Application of Fourier transform IR to degradation studies of epoxy systems J. Polym. Sci. Polym. Chem. Ed., 1979, 17, p 3121–3148.

    CAS  Article  Google Scholar 

  12. 12.

    Y. Duan, S. Gu, Z. Zhang, and M. Wen, Y. Duan, S. Gu, Z. Zhang, and M. Wen, Characterization of structures and novel magnetic response of Fe87.5Si7Al5.5 alloy processed by ball milling J. Alloys Compd., 2012, 542, p 90–96.

    CAS  Article  Google Scholar 

  13. 13.

    T.Y. Byun, S.C. Byeon, K.S. Hong, and C.K. Kim, T.Y. Byun, S.C. Byeon, K.S. Hong, and C.K. Kim, Factors affecting initial permeability of Co-substituted Ni-Zn-Cu ferrites IEEE Trans. Magn., 1999, 35, p 3445–3447.

    CAS  Article  Google Scholar 

  14. 14.

    S.U. Jan, and C.J. Wang, S.U. Jan, and C.J. Wang, Frequency dependence of coercivity and initial permeability in ferromagnetic metallic glasses J. Appl. Phys., 1988, 64, p 4627–4631.

    Article  Google Scholar 

  15. 15.

    L.P. Lefebvre, S. Pelletier, and C. Gélinas, L.P. Lefebvre, S. Pelletier, and C. Gélinas, Effect of electrical resistivity on core losses in soft magnetic iron powder materials J. Magn. Magn. Mater., 1977, 176, p 93–96.

    Article  Google Scholar 

  16. 16.

    H. Shokrollahi, and K. Janghorban, H. Shokrollahi, and K. Janghorban, Soft magnetic composite materials (SMCs) J. Mater. Process. Technol., 2007, 189, p 1–12.

    CAS  Article  Google Scholar 

  17. 17.

    H. Su, X. Tang, H. Zhang, Y. Jing, and Z. Zhong, H. Su, X. Tang, H. Zhang, Y. Jing, and Z. Zhong, Effects of Nb2O5 on DC-bias-superposition characteristic of the low-temperature-fired NiCuZn ferrites IEEE Trans. Magn., 2013, 49, p 4222–4225.

    CAS  Article  Google Scholar 

  18. 18.

    Z.K. Chen, G. Yang, J.P. Yang, S.Y. Fu, L. Ye, and Y.G. Huang, Z.K. Chen, G. Yang, J.P. Yang, S.Y. Fu, L. Ye, and Y.G. Huang, Simultaneously increasing cryogenic strength, ductility and impact resistance of epoxy resins modified by n-butyl glycidyl ether Polymer, 2009, 50, p 1316–1323.

    CAS  Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Ministry of Science and Technology, Taiwan [106-2923-E-006 -009 -MY3 and 109-3111-8-006 -001].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hsing-I Hsiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hsiang, HI., Chuang, KH. & Lee, WH. Magnetic Properties of Iron-Based Alloy Powder Coils Prepared with Screen Printing Using High-Solid-Content Magnetic Pastes. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-021-08746-6

Download citation

Keywords

  • Magnetic pastes
  • screen printing
  • iron-based alloy powder
  • coils
  • epoxy monomer