Assessment of Structural Stability of Pure and Xylenol Orange Dye Doped Potassium Dihydroegn Phosphate Probed by Shock Waves

Abstract

In the present research article, we report the impact of shock waves and the crystallographic structural stability of pure, 0.001 M and 0.01M xylenol orange doped potassium dihydroegn phosphate (KDP) powder samples. The structural stability and crystalline nature of the test samples are demonstrated by powder X-ray diffraction and Raman spectroscopy. The obtained structural properties clearly show that the control sample has a highly stable crystallographic phase at the atomic level. But several shoulder peaks have appeared at shocked conditions due to the lattice distortions and lattice disorders in atomic sites. Among the three samples, 0.001M dye doped KDP exhibits the least shock resistance. The interesting results obtained such as crystallographic phase stability and degree of crystalline stability of the test samples during the course of the experiment are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Reference

  1. 1.

    X. Huang, Da. Li, F. Li, X. Jin, S. Jiang, W. Li, X. Yang, Q. Zhou, Bo. Zou, Q. Cui, B. Liu, and T. Cui, J. Phys. Chem. C., 2012, 116, p 9744.

    CAS  Article  Google Scholar 

  2. 2.

    A. Sivakumar, S. Sahaya Jude Dhas, and S.A. Martin Britto Dhas, Solid State Sci., 2020, 107, p 106340

  3. 3.

    G.I. Kanel, S.V. Razorenov, and G.V. Garkushin, J. Appl. Phys., 2016, 119, p 185903.

    Article  Google Scholar 

  4. 4.

    M.A. Ahlam, M.N. Ravishankar, N. Vijayan, G. Govindaraj, Siddaramaiah , and A.P. Gnana Prakash, Nucl.Instrum .Meth B., 2012, 278, p 26.

  5. 5.

    P. Liu, Y. Zhang, X. Wang, X. Xiang, and W.J. Weber, Nucl. Instrum. Meth B., 2013, 307, p 49.

    CAS  Article  Google Scholar 

  6. 6.

    N.K. Gopinath, G. Jagadeesh, and B. Basu, J. Am. Ceram Soc., 2019, 00, p 1.

    Google Scholar 

  7. 7.

    L. Zhang, Y. Wang, J. Lv, and Y. Ma, Nature Rev., 2017, 2, p 1.

    Google Scholar 

  8. 8.

    A. Sivakumar, A. Saranraj, S Sahaya Jude Dhas and S A Martin Britto Dhas, Mater. Res. Express., 2019, 6, p 046205.

    Article  Google Scholar 

  9. 9.

    P.S. Branicio, J. Zhang, J.P. Rino, A. Nakano, R.K. Kalia, and P. Vashishta, J. Appl. Phys., 2018, 123, p 145902.

    Article  Google Scholar 

  10. 10.

    J. Roth, Mater. Sci. Engg., 2000, 294, p 753.

    Article  Google Scholar 

  11. 11.

    A. Sivakumar, S. Suresh, J. Anto Pradeep, S.Balachandar, and S.A.Martin Britto Dhas, J.Elect.Mater, 2018, 47, p. 4831.

  12. 12.

    A. Sivakumar, and M. Manivannan, S Sahaya Jude Dhas, J Kalyana Sundar, M Jose and S A Martin Britto Dhas, Mater. Res. Express., 2019, 6, p 086303.

    CAS  Article  Google Scholar 

  13. 13.

    A. Sivakumar, A. Saranraj, S. Sahaya Jude Dhas, M. Jose, K. Kamala Bharathi and S.A. Martin Britto Dhas, Opt. Eng., 2019, 58, p. 107101

  14. 14.

    A. Sivakumar, M. Sarumathi, S. Sahaya Jude Dhas, and S.A. Martin Britto Dhas, J.Mater.Res,, 2020, 35, p. 391.

  15. 15.

    A. Sivakumar, A. Saranraj, S. Sahaya Jude Dhas, M. Jose, and S.A. Martin Britto Dhas, Opt. Eng., 2019, 58, p. 077104.

  16. 16.

    Y. Ren, X. Zhao, E.W. Hagley, and Lu. Deng, Sci. Adv., 2016, 2, p 1600404.

    Article  Google Scholar 

  17. 17.

    Y. Kobayashi, S. Endo, L.C. Ming, and T. Kikegawa, Phy. Rev. B., 2002, 65, p 132105.

    Article  Google Scholar 

  18. 18.

    A. Sivakumar, S.Sahaya Jude Dhas, S.Balachandar, and S.A.Martin Britto Dhas, J.Elect.Mater., 2019, 48, p 7868.

  19. 19.

    A. Sivakumar, P. Eniya, S. Sahaya Jude Dhas, J. Kalyana Sundar, P. Sivaprakash, S. Arumugam, and S.A. Martin Britto Dhas, Z. Kristallogr. Cryst. Mater., 2020 https://doi.org/10.1515/zkri-2020-0017

  20. 20.

    S. Chandran, R. Paulraj, and P. Ramasamy, Mater. Res. Bull., 2015, 68, p 210 .

  21. 21.

    S. Balamurugan, and P. Ramasamy, Spectrochim. Acta A., 2009, 71, p 1979.

    CAS  Article  Google Scholar 

  22. 22.

    A. Saranraj, A. Jenipriya, S. Sahaya Jude Dhas, M. Jose, and S.A. Martin Britto Dhas, Cryst. Res. Technol., 2018, 53, p. 1700255.

  23. 23.

    B. Babu, J. Chandrasekaran, S. Balaprabhakaran, and P. Ilayabarathi, Mater. Sci. Poland, 2013, 31, p 151.

    CAS  Article  Google Scholar 

  24. 24.

    P.V. Dhanaraj, N.P. Rajesh, C.K. Mahadevan, and G. Bhagavannarayana, Phys. B, 2009, 404, p 2503.

    CAS  Article  Google Scholar 

  25. 25.

    A. Saranraj, S. Sahaya Jude Dhas, M. Jose, P. Karuppasamy, M. Senthil Pandian, P. Ramasamy, S.A. Martin Britto Dhas, J. Cryst. Growth., 2019, 523, p 125154.

  26. 26.

    A. Sivakumar, S. Balachandar, and S. A. Martin Britto Dhas, Hum. Fact.Mech.Engg. Defense. Safety., 2020, 4, p. 3.

  27. 27.

    S. Kalaiarasi, A. Sivakumar, S.A. Martin Britto Dhas, and M. Jose, Mater. Lett., 2018, 219, p. 72.

  28. 28.

    S.H. Kim, B.H. Oh, K.W. Lee, and C.E. Lee, Phys. Rev B., 2006, 73, p 134114.

    Article  Google Scholar 

  29. 29.

    A.N. Zhukova, N.S. Sidorovb, A.V. Palnichenkob, V.V. Avdonina, and D.V. Shakhrai, High Press. Res., 2009, 29, p 414.

    Article  Google Scholar 

  30. 30.

    R Weber, Christopher R. Fell, J. R. Dahn, and S Hy, J. Electrochem. Soc, 2017, 164, p. 2992.

  31. 31.

    L. Mezeix, and D.J. Green, , Int. J. Appl. Ceram. Technol., 2006, 3, p 166.

    CAS  Article  Google Scholar 

  32. 32.

    R. Blinc, V. Dimic, D. Kolar, G. Lahajnar, and J. Stepišnik, J. Chem. Phys., 1968, 49, p 4996.

    CAS  Article  Google Scholar 

  33. 33.

    C.M.R. Remédios, W. Paraguassu, P.T.C. Freire, J. Mendes-Filho, J.M. Sasaki, and F.E.A. Melo, Phys. Rev. B., 2005, 72, p 01412.

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank the Department of Science and Technology (DST), India, for funding through the DST-FIST programme (SR/FST/College-2017/130 (c)). The author S. Arumugam acknowledges the funding agencies of DST for their financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. A. Martin Britto Dhas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, A., Saranraj, A., Jude Dhas, S.S. et al. Assessment of Structural Stability of Pure and Xylenol Orange Dye Doped Potassium Dihydroegn Phosphate Probed by Shock Waves. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-021-08745-7

Download citation

Keywords

  • Shock waves
  • KDP crystal
  • structure stability
  • Raman spectroscopy