Skip to main content
Log in

High Room-Temperature Thermoelectric Performance of Honeycomb GaN Monolayer

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Self-powered nanoscale devices that scavenge heat from the surrounding environment show great promise in applications as biosensors or environmental sensors. Recently, defect-free monolayer gallium nitride (GaN) with a honeycomb structure was realized experimentally. In this paper, based on first-principles calculations and Boltzmann transport theory, the thermoelectric properties of monolayer GaN are investigated. Its electronic structure characteristics approach the condition of Mahan–Sofo’s best thermoelectrics, which leads to outstanding room-temperature Seebeck coefficients, up to 310 μV·K−1 with a hole concentration of 5 × 1018cm−3. Combined with the intrinsic high electron mobility, it then boosts the power factor of the GaN monolayer system. Moreover, due to the strong in-plane polarization nature of Ga–N bonds, the in-plane lattice vibrations exhibit extremely large anharmonicity, resulting in low thermal conductivity (6.4 W·m−1·K−1 at 300K). These results immediately cause a room-temperature figure of merit ZT of 0.17, indicating the P-type monolayer GaN is a superior candidate for low-dimensional thermoelectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. X. Li, Z.S. Liu, D.G. Zhao, D.S. Jiang, P. Chen, J.J. Zhu, J. Yang, L.C. Le, W. Liu, X.G. He, X.J. Li, F. Liang, L.Q. Zhang, J.P. Liu, H. Yang, Y.T. Zhang, and G.T. Du, Sci. Technol. B, 2016, 34, p 041211.

    Google Scholar 

  2. N.I. Keda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, S. Yoshida, Proc. IEEE, 2010, 98, p 1151–1161.

  3. H. Ishida, R. Kajitani, Y. Kinoshita, H. Umeda, S. Ujita, M. Ogawa, K. Tanaka, T. Morita, S. Tamura, M. Ishida, T. Ueda, IEEE Int. Electron Devices Meeting (IEDM), 2016.

  4. Z.Y. Al Balushi, K. Wang, R.K. Ghosh, et al., Nat. Mater. 2016, 15, p 1166.

    Article  CAS  Google Scholar 

  5. W.L. Wang, Y. Li, Y.L. Zheng, X.C. Li, L.G. Huang, and G.Q. Li, Small, 2019, 15, p 1802995.

    Article  Google Scholar 

  6. D.C. Camacho-Mojica, and F. López-Urías, Sci. Rep., 2015, 5, p 17902.

    Article  CAS  Google Scholar 

  7. H. Gao, Y. Zhang, H. Ye, Z.Y. Yu, Y. Liu, and Y.F. Li, Physica E, 2018, 103, p 289–293.

    Article  CAS  Google Scholar 

  8. Z.Z. Qin, G.Z. Qin, X. Zuo, Z.H. Xiong, and M. Hu, Nanoscale, 2017, 9, p 4295.

    Article  CAS  Google Scholar 

  9. J. Zhang, J. Zhang, J. Appl. Phys., 2018, 123, p 035102.

    Article  Google Scholar 

  10. M. A. Z. Mamun, M. Hasan, N. Mustakim and S. Subrina, TENCON 2019–2019 IEEE Region 10 Conference (TENCON), Kochi, India, 2019, pp. 52–56, doi: https://doi.org/10.1109/TENCON.2019.8929484.

  11. K. Burke, J. Chem. Phys., 2012, 136, p 150901.

    Article  Google Scholar 

  12. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, and D. Ceresolli, J. Phys-Condens. Mat., 2009, 21, p 395502.

    Article  Google Scholar 

  13. P.E. Blochl, Phys. Rev. B, 1994, 50, p 17953.

    Article  CAS  Google Scholar 

  14. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, p 3865.

    Article  CAS  Google Scholar 

  15. A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B, 2008, 78, p 134106.

    Article  Google Scholar 

  16. G.K.H. Madsen, and D.J. Singh, Comput. Phys. Commun., 2006, 175, p 67–71.

    Article  CAS  Google Scholar 

  17. M.V. Fischetti, and S.E. Laux, J. Appl. Phys., 1996, 80, p 2234.

    Article  CAS  Google Scholar 

  18. L. Paulatto, F. Mauri, and M. Lazzeri, Phys. Rev. B, 2013, 87, p 214303.

    Article  Google Scholar 

  19. G. Fugallo, M. Lazzeri, L. Paulatto, and F. Mauri, Phys. Rev. B, 2013, 88, p 045430.

    Article  Google Scholar 

  20. A. Onen, D. Kecik, E. Durgun, and S. Ciraci, Phys. Rev. B, 2016, 93, p 085431.

    Article  Google Scholar 

  21. Z.Z. Zhou, H.J. Liu, and D.D. Fan, Phys. Rev. B, 2019, 99, p 085410.

    Article  Google Scholar 

  22. B. Peng, H. Zhang, H.Z. Shao, K. Xu, G. Ni, L.C. Wu, J. Li, H.L. Lu, Q.Y. Jin, and H.Y. Zhu, ACS Photonics, 2018, 5, p 4081–4088.

    Article  CAS  Google Scholar 

  23. T.Q. Deng, X. Yong, W. Shi, Z.M. Wong, G. Wu, H. Pan, J.S. Wang, and S.W. Yang, J. Mater. Chem. A, 2020, 8, p 4257–4262.

    Article  CAS  Google Scholar 

  24. J. Bardeen, and W. Shockley, Phys. Rev., 1950, 80, p 72–80.

    Article  CAS  Google Scholar 

  25. M.Q. Long, L. Tang, D. Wang, Y.L. Li, and Z.J. Shuai, ACS Nano, 2011, 5, p 2593–2600.

    Article  CAS  Google Scholar 

  26. M. Lee, and S.D. Mahanti, Phys. Rev. B, 2012, 85, p 165149.

    Article  Google Scholar 

  27. M. Suzuki, T. Uenoyama, and A. Yanase, Phys. Rev. B, 1998, 58, p 10064.

    Article  CAS  Google Scholar 

  28. J.J. Gu, L.R. Huang, and S.Z. Liu, RSC Adv., 2019, 9, p 36301.

    Article  CAS  Google Scholar 

  29. W.L. Liu, and A.A. Balandin, J. Appl. Phys., 2005, 97, p 123705.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 11304255 and the Open Project of State Key Laboratory of Environment friendly Energy Materials (No. 18kfhg10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Chang Ren or Xiaowei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, P., Ren, JC. & Zhang, X. High Room-Temperature Thermoelectric Performance of Honeycomb GaN Monolayer. J. Electron. Mater. 50, 2454–2459 (2021). https://doi.org/10.1007/s11664-021-08744-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08744-8

Keywords

Navigation