Tuned Transport Behavior of the IPA-Treated PEDOT:PSS Flexible Temperature Sensor via Screen Printing

Abstract

A flexible temperature sensor based on poly-(3, 4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) with isopropyl alcohol (IPA) treatment is successfully fabricated by screen printing. The distribution of PEDOT is investigated by the SEM, AFM, and Raman techniques. It can be found that the microstructure is manipulated by the ratio of the PEDOT:PSS to IPA content. Raman spectra demonstrate that the transition between quinoid and benzoid structures of PEDOT are tuned by IPA treatment as well. The temperature dependence of resistance for IPA-treated PEDOT:PSS film is found to be well fitted by non-adiabatic small polaron hopping transport. Moreover, a constant temperature coefficient of resistance (TCR) value can be obtained by the optimized ratio of IPA to PEDOT:PSS. Therefore, this paper suggests that the tuned microstructure of PEDOT:PSS film can be realized by IPA treatment, which plays an important role in the physical properties of the temperature sensor based on PEDOT:PSS.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Q.T. Tran, and N. Lee, Q.T. Tran, and N. Lee, Adv. Mater., 2016, 28, 4338.

    Article  Google Scholar 

  2. 2.

    J. Wu, S. Han, T. Yang, Z. Li, Z. Wu, X. Gui, K. Tao, J. Miao, L.K. Norford, C. Liu, and F. Huo, J. Wu, S. Han, T. Yang, Z. Li, Z. Wu, X. Gui, K. Tao, J. Miao, L.K. Norford, C. Liu, and F. Huo, ACS Appl. Mater. Inter., 2018, 10, 9097.

    CAS  Article  Google Scholar 

  3. 3.

    H. Yang, D. Qi, Z. Liu, B.K. Chandran, T. Wang, J. Yu, and X. Chen, H. Yang, D. Qi, Z. Liu, B.K. Chandran, T. Wang, J. Yu, and X. Chen, Adv. Mater., 2016, 28, 9175.

    CAS  Article  Google Scholar 

  4. 4.

    C. Yan, J. Wang, and P.S. Lee, C. Yan, J. Wang, and P.S. Lee, ACS Nano, 2015, 9, 2130.

    CAS  Article  Google Scholar 

  5. 5.

    T. Yokota, Y. Inoue, Y. Terakawa, J. Reeder, M. Kaltenbrunner, T. Ware, K. Yang, K. Mabuchi, T. Murakawa, M. Sekino, W. Voit, T. Sekitani, and T. Someya, T. Yokota, Y. Inoue, Y. Terakawa, J. Reeder, M. Kaltenbrunner, T. Ware, K. Yang, K. Mabuchi, T. Murakawa, M. Sekino, W. Voit, T. Sekitani, and T. Someya, Proc. Natl. Acad. Sci. USA., 2015, 112, 14533.

    CAS  Article  Google Scholar 

  6. 6.

    D.H. Ho, Q. Sun, S.Y. Kim, J.T. Han, D.H. Kim, and J.H. Cho, D.H. Ho, Q. Sun, S.Y. Kim, J.T. Han, D.H. Kim, and J.H. Cho, Adv. Mater., 2016, 13, 2601.

    Article  Google Scholar 

  7. 7.

    R.C. Webb, A.P. Bonifas, A. Behnaz, Y. Zhang, K.J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y. Kim, W. Yeo, J.S. Park, J. Song, Y. Li, Y. Huang, A.M. Gorbach, and J.A. Rogers, R.C. Webb, A.P. Bonifas, A. Behnaz, Y. Zhang, K.J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y. Kim, W. Yeo, J.S. Park, J. Song, Y. Li, Y. Huang, A.M. Gorbach, and J.A. Rogers, Nat. Mater., 2013, 12, 938.

    CAS  Article  Google Scholar 

  8. 8.

    T. Nakajima, S. Hanawa, and T. Tsuchiya, T. Nakajima, S. Hanawa, and T. Tsuchiya, J. Appl. Phys., 2017, 112, 135309.

    Article  Google Scholar 

  9. 9.

    X. Niu, S. Peng, L. Liu, W. Wen, and P. Sheng, X. Niu, S. Peng, L. Liu, W. Wen, and P. Sheng, Adv. Mater., 2007, 19, 2682.

    CAS  Article  Google Scholar 

  10. 10.

    C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin, and Y. Zhang, C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin, and Y. Zhang, Adv. Mater., 2019, 31, 1801072.

    Article  Google Scholar 

  11. 11.

    H. Shi, C. Liu, Q. Jiang, and J. Xu, H. Shi, C. Liu, Q. Jiang, and J. Xu, Adv. Electron. Mater., 2015, 1, 1500017.

    Article  Google Scholar 

  12. 12.

    Y. Hsiao, W. Whang, C. Chen, and Y. Chen, Y. Hsiao, W. Whang, C. Chen, and Y. Chen, J. Mater. Chem., 2008, 18, 5948.

    CAS  Article  Google Scholar 

  13. 13.

    J.C. Yu, J.I. Jang, B.R. Lee, G. Lee, J.T. Han, M.H. Song, and A.C.S. Appl, J.C. Yu, J.I. Jang, B.R. Lee, G. Lee, J.T. Han, and M.H. Song ACS Appl. Mater. Inter., 2014, 6, 2067.

    CAS  Article  Google Scholar 

  14. 14.

    J. Jang, M. Chang, and H. Yoon, J. Jang, M. Chang, and H. Yoon, Adv. Mater., 2005, 17, 1616.

    CAS  Article  Google Scholar 

  15. 15.

    J. Jo, I. Oh, M. Jin, J. Park, J.S. Son, K. An, and J. Yoo, J. Jo, I. Oh, M. Jin, J. Park, J.S. Son, K. An, and J. Yoo, Org. Electron., 2017, 50, 367.

    CAS  Article  Google Scholar 

  16. 16.

    J. Wang, G. Cai, X. Zhu, and X. Zhou, J. Wang, G. Cai, X. Zhu, and X. Zhou, J. Appl. Polym. Sci., 2012, 124, 109.

    CAS  Article  Google Scholar 

  17. 17.

    L.V. Kayser, and D.J. Lipomi, L.V. Kayser, and D.J. Lipomi, Adv. Mater., 2019, 31, 1806133.

    Article  Google Scholar 

  18. 18.

    Y. Wang, R. Song, Y.S. Li, and J.S. Shen, Y. Wang, R. Song, Y.S. Li, and J.S. Shen, Surf. Sci., 2003, 530, 136.

    CAS  Article  Google Scholar 

  19. 19.

    X. Crispin, F.L.E. Jakobsson, A. Crispin, P.C.M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W.R. Salaneck, and M. Berggren, X. Crispin, F.L.E. Jakobsson, A. Crispin, P.C.M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W.R. Salaneck, and M. Berggren, Chem. Mater., 2006, 18, 4354.

    CAS  Article  Google Scholar 

  20. 20.

    U. Lang, E. Mueller, N. Naujoks, and J. Dual, U. Lang, E. Mueller, N. Naujoks, and J. Dual, Adv. Funct. Mater., 2009, 19, 1215.

    CAS  Article  Google Scholar 

  21. 21.

    B.Y. Ouyang, C.W. Chi, F.C. Chen, Q.F. Xi, and Y. Yang, B.Y. Ouyang, C.W. Chi, F.C. Chen, Q.F. Xi, and Y. Yang, Adv. Funct. Mater., 2005, 15, 203.

    CAS  Article  Google Scholar 

  22. 22.

    J. Ouyang, Q.F. Xu, C.W. Chu, Y. Yang, G. Li, and J. Shinar, J. Ouyang, Q.F. Xu, C.W. Chu, Y. Yang, G. Li, and J. Shinar, Polymer, 2004, 45, 8443.

    CAS  Article  Google Scholar 

  23. 23.

    J. Saghaei, A. Fallahzadeh, and M.H. Yousefi, J. Saghaei, A. Fallahzadeh, and M.H. Yousefi, Org. Electron., 2015, 19, 70.

    CAS  Article  Google Scholar 

  24. 24.

    E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S.A. Choulis, E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S.A. Choulis, Org. Electron., 2009, 10, 61

    CAS  Article  Google Scholar 

  25. 25.

    E. Vitoratos, S. Sakkopoulos, N. Paliatsas, K. Emmanouilet, and S.A. Choulis, E. Vitoratos, S. Sakkopoulos, N. Paliatsas, K. Emmanouilet, and S.A. Choulis, Open J. Org. Polym. Mater., 2012, 2, 7

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully appreciate financial support offered by the National Natural Science Foundation of China (Grant Nos. 51371129 and 11174226).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Chang Qi or Shuangli Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wu, L., Qian, J. et al. Tuned Transport Behavior of the IPA-Treated PEDOT:PSS Flexible Temperature Sensor via Screen Printing. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-021-08740-y

Download citation

Keywords

  • Flexible temperature sensor
  • screen printing
  • IPA-treated PEDOT:PSS
  • temperature coefficient of resistance
  • small polaron hopping