Nickel Doping Effects on the Structural and Dielectric Properties of Ba(Zn1/3Nb2/3)O3 Perovskite Ceramics

Abstract

The effects of nickel doping into Ba(Zn1/3Nb2/3)O3 (acronym: BZN) ceramics is structurally, morphologically and electrically investigated. The nickel substitution in sites of Zn which was carried out by the solid state reaction technique strongly enhanced the structural, morphological and electrical performances of the BZN. Specifically, while the lattice constant and crystallite sizes increased, the microstrain and the defect density decreased. The relative density of the BZN ceramics increased from 95.40% to 98.24% upon doping of Ni with content of x = 0.05. In addition, the Ni doping increased the values of electrical conductivity without significant changes in the dielectric constant values. It is also observed that the doping the BZN ceramics highly altered the temperature dependent variation of the relative dielectric constant. In the temperature range of 293–473 K, the x = 0.05 Ni doped BZN samples were less sensitive to temperature. The dynamics of the temperature dependent dielectric response is dominated by the coupled defects excitation mechanisms. Both of the temperatures and frequency dependent dielectric constant, dielectric loss and electrical conductivity suggests that the Ni doped Ba(Zn1/3Nb2/3)O3 ceramics is more appropriate for electronic device fabrication than the pure ones.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    L. Jin, W. Luo, R. Jing, J. Qiao, J. Pang, H. Du, L. Zhang, Y. Tian, G. Liu, and Y. Yan, L. Jin, W. Luo, R. Jing, J. Qiao, J. Pang, H. Du, L. Zhang, Y. Tian, G. Liu, and Y. Yan, Ceram. Int., 2019, 45, p 5518.

    CAS  Article  Google Scholar 

  2. 2.

    X. Cui, L. Liu, H. Li, F. Liu, L. Cheng, and S. Liu, X. Cui, L. Liu, H. Li, F. Liu, L. Cheng, and S. Liu, Mater. Res. Expr., 2020, 7, p 016306.

    CAS  Article  Google Scholar 

  3. 3.

    A. Belous, F. Oleksandr, S. Solopan, P. Maksym, and Z. Igor, J. Magn. Magn. Mater., 166691 (2020).

  4. 4.

    V. Khopkar, and B. Sahoo, V. Khopkar, and B. Sahoo, Phys. Chem. Chem. Phys., 2020, 22, p 2986.

    CAS  Article  Google Scholar 

  5. 5.

    Sh. Matteppanavar, S. Rayaprol, B. Angadi, and B. Sahoo, Sh. Matteppanavar, S. Rayaprol, B. Angadi, and B. Sahoo, J. Alloys Compd., 2016, 677, p 27.

    CAS  Article  Google Scholar 

  6. 6.

    S. Matteppanavar, I. Shivaraja, S. Rayaprol, B. Angadi, and B. Sahoo, S. Matteppanavar, I. Shivaraja, S. Rayaprol, B. Angadi, and B. Sahoo, J. Supercond. Nov. Magnt., 2017, 30, p 1317.

    CAS  Article  Google Scholar 

  7. 7.

    S. Matteppanavar, S. Rayaprol, A.V. Anupama, B. Angadi, and B. Sahoo, S. Matteppanavar, S. Rayaprol, A.V. Anupama, B. Angadi, and B. Sahoo, Ceram. Int., 2015, 41, p 11680.

    CAS  Article  Google Scholar 

  8. 8.

    S. Matteppanavar, S. Rayaprol, A.V. Anupama, B. Sahoo, and B. Angadi, S. Matteppanavar, S. Rayaprol, A.V. Anupama, B. Sahoo, and B. Angadi, J. Supercond. Nov. Magnt., 2015, 28, p 2465.

    CAS  Article  Google Scholar 

  9. 9.

    S. Matteppanavar, S. Rayaprol, K. Singh, V.R. Reddy, and B. Angadi, S. Matteppanavar, S. Rayaprol, K. Singh, V.R. Reddy, and B. Angadi, J. Mater. Sci., 2015, 50, p 4980.

    CAS  Article  Google Scholar 

  10. 10.

    R. Mittal, A. K. Chauhan, and R. Mukhopadhyay, Solid state physics: proceedings of the 56th DAE solid state physics symposium 2011. AIPC 1447 (2012).

  11. 11.

    C. Li, Bin Yang, S.-T. Zhang, Y.-N. Hong, D.-Q. Liu, R. Zhang, G. Shuo, and W.-W. Cao, J. Mater. Sci.: Mater. Electron. 1 (2020).

  12. 12.

    H. S. Mohanty, Ashok Kumar, Balaram Sahoo, Pawan Kumar Kurliya, and Dillip K. Pradhan, J. Mater. Sci.: Mater. Electron. 29, 6966 (2018).

  13. 13.

    S. Madolappa, A.V. Anupama, P.W. Jaschin, K.B.R. Varma, and B. Sahoo, S. Madolappa, A.V. Anupama, P.W. Jaschin, K.B.R. Varma, and B. Sahoo, Bull. Mater. Sci., 2016, 39, p 593.

    CAS  Article  Google Scholar 

  14. 14.

    X. Zhong, Ch. Zhang, F. Chen, Z. Tang, J.I.A.N. Gang, and T. Nonferr, X. Zhong, Ch. Zhang, F. Chen, Z. Tang, J.I.A.N. Gang, and T. Nonferr, Metal Soc., 2020, 30, p 756.

    CAS  Google Scholar 

  15. 15.

    Q. Wei, M. Zhu, M. Zheng, and Y. Hou, Q. Wei, M. Zhu, M. Zheng, and Y. Hou, J. Alloys Compd., 2019, 782, p 611.

    CAS  Article  Google Scholar 

  16. 16.

    M. Huang, X. Yang, and F. Jiang, M. Huang, X. Yang, and F. Jiang, Mater. Res. Expr., 2018, 5, p 066301.

    Article  Google Scholar 

  17. 17.

    X. Yang, Hongya Wu, X. Wang, Y. Luo, and L. Li, J. Alloys Compd. 723, 930 (2017).

  18. 18.

    A.F. Qasrawi, E.İ Sahin, M. Emek, M. Kartal, and S. Kargin, A.F. Qasrawi, E.İ Sahin, M. Emek, M. Kartal, and S. Kargin, Mater. Res. Expr., 2019, 6, p 095095.

    CAS  Article  Google Scholar 

  19. 19.

    A.F. Qasrawi, R.R.N. Kmail, A. Mergen, and S. Genc, A.F. Qasrawi, R.R.N. Kmail, A. Mergen, and S. Genc, J. Electroceram., 2016, 37, p 8.

    CAS  Article  Google Scholar 

  20. 20.

    M.R. Varma, and M.T. Sebastian, M.R. Varma, and M.T. Sebastian, J. Eur. Ceram. Soc., 2007, 27, p 2827.

    CAS  Article  Google Scholar 

  21. 21.

    H. Zhang, T. Ji, L. Li, X. Qi, Y. Liu, J. Cai, H. Du, and J. Sun, H. Zhang, T. Ji, L. Li, X. Qi, Y. Liu, J. Cai, H. Du, and J. Sun, Acta. Phys. Sin., 2008, 24, p 607.

    CAS  Article  Google Scholar 

  22. 22.

    S.J. Huang, Y.B. Xiao, J.L. Liu, Y. Ji, L.Y. Mao, and W.C. Wang, S.J. Huang, Y.B. Xiao, J.L. Liu, Y. Ji, L.Y. Mao, and W.C. Wang, J. Non-Cryst. Solids, 2019, 518, p 10.

    CAS  Article  Google Scholar 

  23. 23.

    G. Zhang, and B. Evans, G. Zhang, and B. Evans, Adv. Mater. Phys. Chem., 2012, 2, p 169.

    CAS  Article  Google Scholar 

  24. 24.

    M. Xiao, S. He, J. Meng, and P. Zhang, M. Xiao, S. He, J. Meng, and P. Zhang, Mater. Chem. Phys., 2020, 242, p 122412.

    CAS  Article  Google Scholar 

  25. 25.

    S.D. Singh, A.K. Poswal, C. Kamal, P. Rajput, A. Chakrabarti, S.N. Jha, and T. Ganguli, S.D. Singh, A.K. Poswal, C. Kamal, P. Rajput, A. Chakrabarti, S.N. Jha, and T. Ganguli, Solid State Commun., 2017, 259, p 40.

    CAS  Article  Google Scholar 

  26. 26.

    B. Show, N. Mukherjee, and A. Mondal, B. Show, N. Mukherjee, and A. Mondal, RSC Adv., 2016, 6, p 75347.

    CAS  Article  Google Scholar 

  27. 27.

    M. Lafont, L.F. Juarez, and C. Vahlas, M. Lafont, L.F. Juarez, and C. Vahlas, Scr. Mater., 2004, 51, p 699.

    CAS  Article  Google Scholar 

  28. 28.

    C. Kaliyaperumal, A. Sankarakumar, and T. Paramasivam, C. Kaliyaperumal, A. Sankarakumar, and T. Paramasivam, J. Alloys Compd., 2020, 813, p 152221.

    CAS  Article  Google Scholar 

  29. 29.

    A.F. Qasrawi, and T.S. Kayed, A.F. Qasrawi, and T.S. Kayed, and Filiz Ercan Solid Stat. Commun., 2011, 151, p 615.

    CAS  Article  Google Scholar 

  30. 30.

    M. Kul, M. Zor, A.S. Aybek, S. Irmak, and E. Turan, M. Kul, M. Zor, A.S. Aybek, S. Irmak, and E. Turan, Sol. Energy Mater. Sol. Cells, 2007, 91, p 882.

    CAS  Article  Google Scholar 

  31. 31.

    H. Noor, N. Tariq, N. Iqbal, S. Riazand, and S. Naseem in The 2016 world congress on Advances in civil, environment, and Mater. Res. (ACEM16), Jeju Island, Korea, August 28–September 1, 2016.

  32. 32.

    H.S. Mohanty, T. Dam, H. Borkar, A. Kumar, K.K. Mishra, S. Sen, B. Behera, B. Sahoo, and D.K. Pradhan, H.S. Mohanty, T. Dam, H. Borkar, A. Kumar, K.K. Mishra, S. Sen, B. Behera, B. Sahoo, and D.K. Pradhan, Ferroelectrics, 2017, 517, p 25.

    CAS  Article  Google Scholar 

  33. 33.

    D. Shihua, Y. Xi, and Y. Yong, D. Shihua, Y. Xi, and Y. Yong, Ceram. Int., 2004, 30, p 1195.

    Article  Google Scholar 

  34. 34.

    A. Mergen, and E. Korkmaz, A. Mergen, and E. Korkmaz, J. Euro. Ceram. Soc., 2011, 31, p 2649.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work which is edited in memory of Prof. Dr. Ayhan Mergen, whom we lost in 2018 but remember for his scientific innovations forever, was funded by the Marmara University Research center. Mr. Selim Şahin (passed away 2015) is also acknowledged for his efforts by Dr. Etham Sahin. Thanks also go to the Deanship of Scientific Research at the Arab-American University, Jenin Palestine, for their support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. F. Qasrawi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qasrawi, A.F., Sahin, E.İ. & Emek, M. Nickel Doping Effects on the Structural and Dielectric Properties of Ba(Zn1/3Nb2/3)O3 Perovskite Ceramics. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-021-08737-7

Download citation

Keywords

  • Ba(Zn1/3Nb2/3)O3 ceramics
  • x-ray diffraction
  • dielectric
  • BZN
  • Ni doping