High-Quality β-Ga2O3 Films with Influence of Growth Temperature by Pulsed Laser Deposition for Solar-Blind Photodetectors

Abstract

High-quality β-Ga2O3 films were grown on (0001) sapphire substrates at various substrate temperature by pulsed laser deposition (PLD) in a high vacuum chamber. Low pressure (1.6 mPa) and high reactivity oxygen plasma was introduced as reaction gas. The films were used to fabricate metal–semiconductor–metal (MSM) solar-blind photodetectors by electron-beam evaporation. The β-Ga2O3 -based photodetector exhibited high performance with a low dark current (about 40 pA), fast response speed (τrise: 0.17 s, τdecay: 0.03 s) and high responsivity (0.35 A/W). These results represent the high quality of β-Ga2O3 films and excellent performance for PLD-grown β-Ga2O3 -based MSM solar-blind photodetectors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    L. Sang, M. Liao, and M. Sumiya, Sensors (Basel, Switzerland) 13, 10482–10518 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    M. Razeghi, Proc. IEEE 90, 1006–1014 (2002).

    CAS  Article  Google Scholar 

  3. 3.

    T. Tut, T. Yelboga, E. Ulker, and E. Ozbay, Appl. Phys. Lett. 92, 103502 (2008).

    Article  Google Scholar 

  4. 4.

    T. Tut, M. Gokkavas, A. Inal, and E. Ozbay, Appl. Phys. Lett. 90, 163506 (2007).

    Article  Google Scholar 

  5. 5.

    K. Koike, K. Hama, I. Nakashima, G. Takada, K. Ogata, S. Sasa, M. Inoue, and M. Yano, J. Cryst. Growth 278, 288–292 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Phys. Status Solidi (A) 211, 21–26 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Y. Huan, S. Sun, C. Gu, W. Liu, S. Ding, H. Yu, C. Xia, and D.W. Zhang, Nanoscale Res. Lett. 13, 246 (2018).

    Article  Google Scholar 

  8. 8.

    S. Sarkar and D. Basak, ACS Appl. Mater. Interfaces. 7, 16322–16329 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    J. Wang, L. Ye, X. Wang, H. Zhang, L. Li, C. Kong, and W. Li, J. Alloys. Compd. 803, 9–15 (2019).

    CAS  Article  Google Scholar 

  10. 10.

    S. Jiao, H. Lu, X. Wang, Y. Nie, D. Wang, S. Gao, and J. Wang, ECS J. Solid State Sci. Technol. 8, Q3086–Q3090 (2019).

    CAS  Article  Google Scholar 

  11. 11.

    W.E. Mahmoud, Sol. Energy Mater. Sol. Cells 152, 65–72 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    R. Lin, W. Zheng, D. Zhang, Z. Zhang, Q. Liao, L. Yang, and F. Huang, ACS Appl. Mater. Interfaces. 10, 22419–22426 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    D. Zhang, W. Zheng, R.C. Lin, T.T. Li, Z.J. Zhang, and F. Huang, J. Alloys. Compd. 735, 150–154 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Y. Xu, Z. An, L. Zhang, Q. Feng, J. Zhang, C. Zhang, and Y. Hao, Optical Mater. Express 8, 2941 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    S. Rafique, L. Han, and H. Zhao, Phys. Status Solidi (a) 214, 1700063 (2017).

    Article  Google Scholar 

  16. 16.

    A. Singh Pratiyush, S. Krishnamoorthy, S. Vishnu Solanke, Z. Xia, R. Muralidharan, S. Rajan, and D.N. Nath, Appl. Phys. Lett. 110, 221107 (2017).

    Article  Google Scholar 

  17. 17.

    S. Ghose, S. Rahman, L. Hong, J.S. Rojas-Ramirez, H. Jin, K. Park, R. Klie, and R. Droopad, J. Appl. Phys. 122, 095302 (2017).

    Article  Google Scholar 

  18. 18.

    Z. Feng, L. Huang, Q. Feng, X. Li, H. Zhang, W. Tang, J. Zhang, and Y. Hao, Optical Mater. Express 8, 2229 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    S.H. Lee, S.B. Kim, Y. Moon, S.M. Kim, H.J. Jung, M.S. Seo, K.M. Lee, S. Kim, and S.W. Lee, ACS Photonics 4, 2937–2943 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Q. Wang, J. Chen, P. Huang, M. Li, Y. Lu, K.P. Homewood, G. Chang, H. Chen, and Y. He, Appl. Surf. Sci. 489, 101–109 (2019).

    CAS  Article  Google Scholar 

  21. 21.

    F. Yu, S. Ou, and D. Wuu, Optical Mater. Express 5, 1240 (2015).

    Article  Google Scholar 

  22. 22.

    S. Müller, H. von Wenckstern, D. Splith, F. Schmidt, and M. Grundmann, Phys. Status Solidi (A) 211, 34–39 (2014).

    Article  Google Scholar 

  23. 23.

    J.B. Varley, J.R. Weber, A. Janotti, and C.G. Van de Walle, Appl. Phys. Lett. 97, 142106 (2010).

    Article  Google Scholar 

  24. 24.

    M. Zhang, M. Xu, M. Li, Q. Zhang, Y. Lu, J. Chen, M. Li, J. Dai, C. Chen, and Y. He, Appl. Surf. Sci. 423, 611–618 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    L. Qian, Z. Wu, Y. Zhang, P.T. Lai, X. Liu, and Y. Li, ACS Photonics 4, 2203–2211 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    L. Dong, J. Yu, R. Jia, J. Hu, Y. Zhang, and J. Sun, Optical Mater. Express 9, 1191 (2019).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 51972283 and 91833301.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xinhua Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Shen, L., Liu, H. et al. High-Quality β-Ga2O3 Films with Influence of Growth Temperature by Pulsed Laser Deposition for Solar-Blind Photodetectors. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-020-08725-3

Download citation

Keywords

  • Physical vapour deposition
  • epitaxial growth
  • thin films
  • MSM structure
  • solar-blind photodetectors