Carbon-based Multi-layered Films for Electronic Application: A Review

Abstract

The current article reviews the construction of thin films comprising carbon-based nanomaterials for application in electrical and electronic fields. Carbon-based materials such as carbon nanotubes, graphene, and fullerene are known to possess excellent electrical and electronic properties, which makes them desirable materials for the fabrication of micro- and nano-electromechanical devices. The fabrication process of thin films, including the deposition of several layers, removal of layers, solution processing methods, inkjet printing, micro-emulsion polymerization methods, deposition through filtration processes, spin coating, dip coating, pen lithography, vacuum-assisted flocculation, vacuum-assisted layer-by-layer assembly laser writing, etc., has been extensively reviewed. It is evident from the past findings that the fabricated thin films constituting carbon nanomaterials shows predominant alteration in electrical and electronic properties like sheet resistance, ionic transport, potential difference, conductivity, electro-rheological, transparency, trans-conductance, transmittance, bending stability, etc. In view of the referred properties, the developed materials find wide applications in charge-trap flash memories, flexible organic resistive memory devices, photovoltaic devices, flexible and transparent electronics, heat sinks in electronic materials, liquid crystal displays (LCDs), thin-film solar cells, flexible touch-screen panels, electronic papers, micro-batteries, electrochemical micro-capacitors, humidity sensors, optoelectronic devices, etc. We expect that the current review article will be a valuable asset for the researchers working in the field of carbon nanomaterials.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Copyright (2009) American Chemical Society).

Fig. 5

Copyright (2010) American Chemical Society.

Fig. 6

Copyright (2010) American Chemical Society.

Fig. 7

Copyright (2009) American Chemical Society.

Fig. 8

Copyright (2009) American Chemical Society.

Fig. 9
Fig. 10

Copyright (2010) American Chemical Society.

Fig. 11

Copyright (2011) American Chemical Society.

Fig. 12
Fig. 13

Copyright (2010) American Chemical Society.

Fig. 14

Copyright (2010) American Chemical Society.

Fig. 15

Copyright (2012) American Chemical Society.

Fig. 16

Copyright (2011) American Chemical Society (Color figure online).

Fig. 17
Fig. 18
Fig. 19

Copyright (2011) American Chemical Society.

Fig. 20

Abbreviations

ABS:

Poly(acrylonitrile-co-butadiene-co-styrene)

AFM:

Atomic force microscopy

AIBN:

Azobisisobutyronitrile

APCVD:

Ambient pressure chemical vapor deposition

ATR:

Attenuated total reflection

CA:

Cellulose acetate

C-AFM:

Conductive atomic force microscopy

CCS:

Confinement controlled sublimation

CH4 :

Methane

CMG:

Chemically modified graphene

CMOS:

Complementary metal–oxide–semiconductor

CNT:

Carbon nanotube

CRG:

Chemically reduced graphene sheets

CTF:

Charge-trap flash

CV:

Cyclic voltammetry

CVD:

Chemical vapor deposition

DI:

Deionized

d-LBL:

De-wetting layer by layer

DMF:

Dimethylformamide

DODA.Br:

Dimethyldioctadecylammonium bromide

DSSC:

Dye-sensitized solar cell

DVB:

Divinyl benzene

ECC_LBL:

Electrochemical coupling layer by layer

e-CMG:

Embossed CMG

EGO:

Exfoliated graphene oxide

EIS:

Electrochemical impedance spectroscopy

EISA:

Evaporation-induced self-assembly process

EPD:

Electrophoretic deposition

ER:

Electrorheological

ESR:

Equivalent series resistance

FET:

Field effect transistors

FF:

Fill factor

f-GNR:

Functionalized graphene nanoribbon

FGS:

Functionalized graphene sheets

FLG:

Few-layer graphene

fMWNTs:

Functionalized multi-walled carbon nanotubes

FTIR:

Fourier transform infrared spectroscopy

GCNT:

Graphitic carbon nanotube

GNR:

Graphene nanoribbon

GO:

Graphene oxide

GOP:

Graphene oxide paper

GP:

Graphene paper

GS:

Graphene nanosheets

GSMBE:

Gas source molecular beam epitaxy

HCl:

Hydrochloric acid

HOPG:

Highly oriented pyrolytic graphite

HRTEM:

High-resolution transmission electron microscopy

HTL:

Hole transporting layers

NADH:

Hydroxylamine reductase

IS-IL:

Imidazolium salt-based ionic liquid

ITO:

Indium tin oxide

LB:

Langmuir–Blodgett

LBL:

Layer by layer

LDH:

Lactate dehydrogenase

LIB:

Lithium-ion battery

M:

Molarity

MEMS:

Microelectromechanical systems

MLG:

Multilayer graphene

MWNT:

Multi-walled carbon nanotube

NaOH:

Sodium hydroxide

NEMS:

Nano-electromechanical systems

NG:

Nitrogen-doped graphene

NT:

Nanotube

OFET:

Organic field effect transistor

OM:

Optical microscopy

OPV:

Organic photovoltaic

ORR:

Oxygen reduction reaction

PAA:

Polyacrylic acid

PAH:

Poly(allylamine hydrochloride)

PAM:

Polyacrylamide

PAN:

Polyacrylonitrile

PANI:

Polyaniline

PCBM:

[6,6]-Phenyl-C61-butyric acid methyl ester

PCE:

Power conversion efficiency

PDAC:

Poly(diallyldimethylammoniumchloride)

PDDA:

Poly(dimethyldiallylammonium chloride)

PDMS:

Polydimethylsiloxane

PE:

Polyelectrolyte

PEDOT:

Poly(3,4-ethylenedioxythiophene)

PEI:

Poly(ethyleneimine)

PET:

Polyethylene terephthalate

PMMA:

Poly(methyl methacrylate)

PPE:

Polyphenyl ether

PS:

Polystyrene

PSS:

Poly(sodium 4-styrenesulfonate)

PV:

Photovoltaic

PVA:

Polyvinyl alcohol

RGO:

Reduced graphene oxide

RIE:

Reactive ion etching

RMGO:

Reduced multilayer graphene oxide

SAED:

Selected-area electron diffraction

SA-LBL:

Spin-assisted layer by layer

SAM:

Self-assembled monolayer

sccm:

Standard cubic centimeters per min

SDS:

Sodium dodecyl sulfate

SEM:

Scanning electron microscopy

SHG:

Self-assembled graphene hydrogels

SPS:

Sulfated polystyrene

SWNT:

Single-walled carbon nanotube

TCNT:

Tangled carbon nanotube

TEM:

Transmission electron microscopy

TFT:

Thin-film transistors

TGA:

Thermogravimetric analysis

THF:

Tetrahydrofuran

TMB:

Trimethylboron

UL-GO:

Ultralarge graphene oxide

UV:

Ultraviolet

VACNT:

Vertically aligned carbon nanotube

VASA:

Vacuum-assisted self-assembly

VAF:

Vacuum-assisted flocculation

VALBL:

Vacuum-assisted layer by layer

WORM:

Write once-read many

xGnPs:

Exfoliated graphite nanoplatelets

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

PU:

Polyurethane

References

  1. 1.

    W. Xue and T. Cui, Electrical and electromechanical characteristics of nanoassembled carbon nanotube thin film resistors on flexible substrates, in TRANSDUCERS 2007–2007 International Solid-State Sensors, Actuators and Microsystems Conference (IEEE, 2007), p. 1047.

  2. 2.

    K.M. Holder, A.A. Cain, M.G. Plummer, B.E. Stevens, P.K. Odenborg, A.B. Morgan, and J.C. Grunlan, Macromol. Mater. Eng. 301, 665 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    V. Dhinakaran, M. Lavanya, K. Vigneswari, M. Ravichandran, and M. Vijayakumar, Mater. Today Proc. 27, 824 (2020).

    Article  CAS  Google Scholar 

  4. 4.

    H. Jiang, B. Zhao, Y. Liu, S. Li, J. Liu, Y. Song, D. Wang, W. Xin, and L. Ren, J. Mater. Sci. 1, 480 (2020).

    Article  CAS  Google Scholar 

  5. 5.

    B. Fang, D. Chang, Z. Xu, and C. Gao, Adv. Mater. 32, 1902664 (2020).

    CAS  Article  Google Scholar 

  6. 6.

    S.D. Kumar, M. Ravichandran, S. Alagarsamy, C. Chanakyan, M. Meignanamoorthy, and S. Sakthivelu, Mater. Today Proc. 27, 1152 (2020).

    Article  CAS  Google Scholar 

  7. 7.

    H.K. Moghaddam, M.R. Maraki, and A. Rajaei, Int. J. Reconfig. Embed. Syst. 9, 61 (2020).

    Google Scholar 

  8. 8.

    Y. Jang, S.M. Kim, G.M. Spinks, and S.J. Kim, Adv. Mater. 32, 1902670 (2020).

    CAS  Article  Google Scholar 

  9. 9.

    E. Alvarez-Zauco, H. Sobral, and E. Martínez-Loran, J. Nanosci. Nanotechnol. 20, 1732 (2020).

    CAS  Article  Google Scholar 

  10. 10.

    L.L. Deng, S.Y. Xie, and F. Gao, Adv. Electron. Mater. 4, 1700435 (2018).

    Article  CAS  Google Scholar 

  11. 11.

    M. Alazemi, I. Dutta, F. Wang, R. Blunk, and A. Angelopoulos, Carbon 48, 4063 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    F. Gunes, H.-J. Shin, C. Biswas, G.H. Han, E.S. Kim, S.J. Chae, J.-Y. Choi, and Y.H. Lee, ACS Nano 4, 4595 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    W. Xue and T. Cui, Nanotechnology 18, 145709 (2007).

    Article  CAS  Google Scholar 

  14. 14.

    W. Zhao, B. Tong, J. Shi, Y. Pan, J. Shen, J. Zhi, W.K. Chan, and Y. Dong, Langmuir 26, 16084 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    A.S. Patole, S.P. Patole, S.-Y. Jung, J.-B. Yoo, J.-H. An, and T.-H. Kim, Eur. Polym. J. 48, 252 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    M. Olek, J. Ostrander, S. Jurga, H. Möhwald, N. Kotov, K. Kempa, and M. Giersig, Nano Lett. 4, 1889 (2004).

    CAS  Article  Google Scholar 

  17. 17.

    L. Liu, X. Ye, K. Wu, Z. Zhou, D. Lee, and T. Cui, IEEE Sens. J. 9, 1308 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    S.K. Tiwari, S. Sahoo, N. Wang, and A. Huczko, J. Sci. Adv. Mater. Dev. 5, 10 (2020).

    Google Scholar 

  19. 19.

    R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, K. Maegawa, W.K. Tan, G. Kawamura, K.K. Kar, and A. Matsuda, Mater. Today 39, 47 (2020).

    CAS  Article  Google Scholar 

  20. 20.

    R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, R.M. Yadav, R.K. Verma, D.P. Singh, W.K. Tan, A.P. del Pino, and S.A. Moshkalev, Nano Res. 12, 2655 (2019).

    CAS  Article  Google Scholar 

  21. 21.

    R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan, K.K. Kar, and A. Matsuda, Prog. Energy Combust. Sci. 75, 100786 (2019).

    Article  Google Scholar 

  22. 22.

    K. Maheshkumar, K. Krishnamurthy, P. Sathishkumar, S. Sahoo, E. Uddin, S. Pal, and R. Rajasekar, Polym. Compos. 35, 2297 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    N. Saravanan, R. Rajasekar, S. Mahalakshmi, T. Sathishkumar, K. Sasikumar, and S. Sahoo, J. Reinf. Plast. Compos. 33, 1158 (2014).

    Article  CAS  Google Scholar 

  24. 24.

    J.T. Han, B.J. Kim, B.G. Kim, J.S. Kim, B.H. Jeong, S.Y. Jeong, H.J. Jeong, J.H. Cho, and G.-W. Lee, ACS Nano 5, 8884 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    K. Masuda, T. Abe, H. Benten, H. Ohkita, and S. Ito, Langmuir 26, 13472 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    W. Xue and T. Cui, Sens. Actuators, A 145, 330 (2008).

    Article  CAS  Google Scholar 

  27. 27.

    B.S. Shim, P. Podsiadlo, D.G. Lilly, A. Agarwal, J. Lee, Z. Tang, S. Ho, P. Ingle, D. Paterson, and W. Lu, Nano Lett. 7, 3266 (2007).

    CAS  Article  Google Scholar 

  28. 28.

    L.J. Cote, F. Kim, and J. Huang, J. Am. Chem. Soc. 131, 1043 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    B.-S. Kong, J. Geng, and H.-T. Jung, Chem. Commun. (16), 2174 (2009).

  30. 30.

    Y. Zhou, Q. Bao, B. Varghese, L.A.L. Tang, C.K. Tan, C.H. Sow, and K.P. Loh, Adv. Mater. 22, 67 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    C.-Y. Su, A.-Y. Lu, C.-Y. Wu, Y.-T. Li, K.-K. Liu, W. Zhang, S.-Y. Lin, Z.-Y. Juang, Y.-L. Zhong, and F.-R. Chen, Nano Lett. 11, 3612 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    G. Schneider, G. Decher, N. Nerambourg, R. Praho, M.H. Werts, and M. Blanchard-Desce, Nano Lett. 6, 530 (2006).

    CAS  Article  Google Scholar 

  33. 33.

    M. Lefort, G. Popa, E. Seyrek, R. Szamocki, O. Felix, J. Hemmerlé, L. Vidal, J.C. Voegel, F. Boulmedais, and G. Decher, Angew. Chem. Int. Ed. 49, 10110 (2010).

    CAS  Article  Google Scholar 

  34. 34.

    O. Félix, Z. Zheng, F. Cousin, and G. Decher, C. R. Chim. 12, 225 (2009).

    Article  CAS  Google Scholar 

  35. 35.

    D. Volodkin, Y. Arntz, P. Schaaf, H. Moehwald, J.-C. Voegel, and V. Ball, Soft Matter 4, 122 (2008).

    CAS  Article  Google Scholar 

  36. 36.

    D.G. Shchukin, M. Zheludkevich, K. Yasakau, S. Lamaka, M.G. Ferreira, and H. Möhwald, Adv. Mater. 18, 1672 (2006).

    CAS  Article  Google Scholar 

  37. 37.

    M. Ma, M. Gupta, Z. Li, L. Zhai, K.K. Gleason, R.E. Cohen, M.F. Rubner, and G.C. Rutledge, Adv. Mater. 19, 255 (2007).

    CAS  Article  Google Scholar 

  38. 38.

    Z. Wu, D. Lee, M.F. Rubner, and R.E. Cohen, Small 3, 1445 (2007).

    CAS  Article  Google Scholar 

  39. 39.

    W. Song, Y. Yang, H. Moehwald, and J. Li, Soft Matter 7, 359 (2011).

    CAS  Article  Google Scholar 

  40. 40.

    C. Jiang and V.V. Tsukruk, Soft Matter 1, 334 (2005).

    CAS  Article  Google Scholar 

  41. 41.

    M.N. Hyder, S.W. Lee, F.Ç. Cebeci, D.J. Schmidt, Y. Shao-Horn, and P.T. Hammond, ACS Nano 5, 8552 (2011).

    CAS  Article  Google Scholar 

  42. 42.

    J. Huang, Y. Zhu, W. Jiang, J. Yin, Q. Tang, and X. Yang, ACS Appl. Mater. Interfaces 6, 1754 (2014).

    CAS  Article  Google Scholar 

  43. 43.

    J. Shi, B. Jiang, C. Li, F. Yan, D. Wang, C. Yang, and J. Wan, Mater. Chem. Phys. 245, 122533 (2020).

    CAS  Article  Google Scholar 

  44. 44.

    J. Si, L. Xu, M. Zhu, Z. Zhang, and L.M. Peng, Adv. Electron. Mater. 5, 1900122 (2019).

    Article  CAS  Google Scholar 

  45. 45.

    N.N. Rosli, M.A. Ibrahim, N.A. Ludin, M.A.M. Teridi, and K. Sopian, Renew. Sustain. Energy Rev. 99, 83 (2019).

    CAS  Article  Google Scholar 

  46. 46.

    I. Jeon, R. Xiang, A. Shawky, Y. Matsuo, and S. Maruyama, Adv. Energy Mater. 9, 1801312 (2019).

    Article  CAS  Google Scholar 

  47. 47.

    Y. Cao, S. Cong, X. Cao, F. Wu, Q. Liu, M.R. Amer, and C. Zhou, Review of Electronics Based on Single-Walled Carbon Nanotubes, Single-Walled Carbon Nanotubes (Berlin: Springer, 2019), p. 189.

    Google Scholar 

  48. 48.

    Y. Watanabe, H. Sasabe, and J. Kido, Bull. Chem. Soc. Jpn. 92, 716 (2019).

    CAS  Article  Google Scholar 

  49. 49.

    K. Ariga, M. Ito, T. Mori, S. Watanabe, and J. Takeya, Nano Today 28, 100762 (2019).

    Article  Google Scholar 

  50. 50.

    Q. Zheng, B. Zhang, X. Lin, X. Shen, N. Yousefi, Z.-D. Huang, Z. Li, and J.-K. Kim, J. Mater. Chem. 22, 25072 (2012).

    CAS  Article  Google Scholar 

  51. 51.

    K. Sheng, H. Bai, Y. Sun, C. Li, and G. Shi, Polymer 52, 5567 (2011).

    CAS  Article  Google Scholar 

  52. 52.

    Y. Wang, S.W. Tong, X.F. Xu, B. Özyilmaz, and K.P. Loh, Adv. Mater. 23, 1514 (2011).

    CAS  Article  Google Scholar 

  53. 53.

    W. Huang, C. Li, L. Gao, Y. Zhang, Y. Wang, Z.N. Huang, T. Chen, L. Hu, and H. Zhang, J. Mater. Chem. C 8, 1172 (2020).

    CAS  Article  Google Scholar 

  54. 54.

    J.-B. Sim, H.-H. Yang, M.-J. Lee, J.-B. Yoon, and S.-M. Choi, Appl. Phys. A 108, 305 (2012).

    CAS  Article  Google Scholar 

  55. 55.

    D. Chen, X. Wang, T. Liu, X. Wang, and J. Li, ACS Appl. Mater. Interfaces 2, 2005 (2010).

    CAS  Article  Google Scholar 

  56. 56.

    J.K. Park, S.M. Song, J.H. Mun, and B.J. Cho, Nano Lett. 11, 5383 (2011).

    CAS  Article  Google Scholar 

  57. 57.

    F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, and P.J. Paul, ACS Nano 6, 2992 (2012).

    CAS  Article  Google Scholar 

  58. 58.

    S. Guo and S. Dong, Chem. Soc. Rev. 40, 2644 (2011).

    CAS  Article  Google Scholar 

  59. 59.

    J. Chen, Y. Wen, Y. Guo, B. Wu, L. Huang, Y. Xue, D. Geng, D. Wang, G. Yu, and Y. Liu, J. Am. Chem. Soc. 133, 17548 (2011).

    CAS  Article  Google Scholar 

  60. 60.

    C.-W. Cho, S.-M. Lee, U. Paik, S.-M. Yoon, J.-Y. Choi, and H.S. Lee, Colloids Surf. A 313, 419 (2008).

    Article  CAS  Google Scholar 

  61. 61.

    L.L. Zhang, X. Zhao, M.D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger, and R.S. Ruoff, Nano Lett. 12, 1806 (2012).

    CAS  Article  Google Scholar 

  62. 62.

    I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov, ACS Nano 5, 6069 (2011).

    CAS  Article  Google Scholar 

  63. 63.

    J.-U. Park, S. Nam, M.-S. Lee, and C.M. Lieber, Nat. Mater. 11, 120 (2012).

    CAS  Article  Google Scholar 

  64. 64.

    S.B. Yang, B.-S. Kong, D.-H. Jung, Y.-K. Baek, C.-S. Han, S.-K. Oh, and H.-T. Jung, Nanoscale 3, 1361 (2011).

    CAS  Article  Google Scholar 

  65. 65.

    W.I. Park, C.-H. Lee, J.M. Lee, N.-J. Kim, and G.-C. Yi, Nanoscale 3, 3522 (2011).

    CAS  Article  Google Scholar 

  66. 66.

    J. Hong, J.Y. Han, H. Yoon, P. Joo, T. Lee, E. Seo, K. Char, and B.-S. Kim, Nanoscale 3, 4515 (2011).

    CAS  Article  Google Scholar 

  67. 67.

    S. Yin, Z. Niu, and X. Chen, Small 8, 2458 (2012).

    CAS  Article  Google Scholar 

  68. 68.

    S.W. Lee, B.M. Gallant, H.R. Byon, P.T. Hammond, and Y. Shao-Horn, Energy Environ. Sci. 4, 1972 (2011).

    CAS  Article  Google Scholar 

  69. 69.

    K. Ariga, M. Li, G.J. Richards, and J.P. Hill, J. Nanosci. Nanotechnol. 11, 1 (2011).

    CAS  Article  Google Scholar 

  70. 70.

    S. Xin, Y.-G. Guo, and L.-J. Wan, Acc. Chem. Res. 45, 1759 (2012).

    CAS  Article  Google Scholar 

  71. 71.

    A. Cheng and R. Swaminathan. Nanotechnol. Eng. Univ. Waterloo 1 (2008).

  72. 72.

    X. Zhang, H. Chen, and H. Zhang, Chem. Commun. (14), 1395 (2007).

  73. 73.

    K. Ariga, J.P. Hill, and Q. Ji, PCCP 9, 2319 (2007).

    CAS  Article  Google Scholar 

  74. 74.

    D. Volodkin, R. Von Klitzing, and H. Moehwald, Polymers 6, 1502 (2014).

    Article  CAS  Google Scholar 

  75. 75.

    S.F. Kiew, L.V. Kiew, H.B. Lee, T. Imae, and L.Y. Chung, J. Control. Release 226, 217 (2016).

    CAS  Article  Google Scholar 

  76. 76.

    M. Azizi-Lalabadi, H. Hashemi, J. Feng, and S.M. Jafari, Adv. Colloid Interface Sci. 284, 102250 (2020).

    CAS  Article  Google Scholar 

  77. 77.

    K.U. Lee, Y.H. Cho, M.C. Petty, and B.T. Ahn, Carbon 47, 475 (2009).

    CAS  Article  Google Scholar 

  78. 78.

    G.-R. Xu, S.-H. Wang, H.-L. Zhao, S.-B. Wu, J.-M. Xu, L. Li, and X.-Y. Liu, J. Membr. Sci. 493, 428 (2015).

    CAS  Article  Google Scholar 

  79. 79.

    X. Qiu, Z. Li, X. Li, and Z. Zhang, Chem. Eng. J. 334, 108 (2018).

    CAS  Article  Google Scholar 

  80. 80.

    D. Kim, M. Gu, M. Park, T. Kim, and B.-S. Kim, Mol. Syst. Des. Eng. 4, 65 (2019).

    CAS  Article  Google Scholar 

  81. 81.

    K. Ariga, E. Ahn, M. Park, and B.S. Kim, Chem. Asian J. 14, 2553 (2019).

    CAS  Article  Google Scholar 

  82. 82.

    G.M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang, J. Lipton, K. Maleski, J. Kong, E. Shaulsky, and M. Elimelech, Adv. Funct. Mater. 28, 1803360 (2018).

    Article  CAS  Google Scholar 

  83. 83.

    J. Zhu, W. Cao, M. Yue, Y. Hou, J. Han, and M. Yang, ACS Nano 9, 2489 (2015).

    CAS  Article  Google Scholar 

  84. 84.

    K.E. Tettey, M.Q. Yee, and D. Lee, ACS Appl. Mater. Interfaces 2, 2646 (2010).

    CAS  Article  Google Scholar 

  85. 85.

    L. Zhang, W. Xu, X.G. Luo, and J.N. Wang, Carbon 90, 215 (2015).

    CAS  Article  Google Scholar 

  86. 86.

    Z. Ma, A. Wei, J. Ma, L. Shao, H. Jiang, D. Dong, Z. Ji, Q. Wang, and S. Kang, Nanoscale 10, 7116 (2018).

    CAS  Article  Google Scholar 

  87. 87.

    K. Ariga, K. Minami, and L.K. Shrestha, Analyst 141, 2629 (2016).

    CAS  Article  Google Scholar 

  88. 88.

    J. Yan, X. Liu, and B. Li, Electrochem. Commun. 56, 46 (2015).

    CAS  Article  Google Scholar 

  89. 89.

    P.V. Morais, V.F. Gomes, A.C. Silva, N.O. Dantas, M.J. Schöning, and J.R. Siqueira, J. Mater. Sci. 52, 12314 (2017).

    CAS  Article  Google Scholar 

  90. 90.

    K. Ariga, Langmuir 36, 7158 (2020).

    CAS  Article  Google Scholar 

  91. 91.

    M. Elderdfi and A.F. Sikorski, Chem. Phys. Lipids 212, 61 (2018).

    CAS  Article  Google Scholar 

  92. 92.

    K. Ariga, T. Mori, and J. Li, Langmuir 35, 3585 (2018).

    Article  CAS  Google Scholar 

  93. 93.

    H. Li, G. Zhu, Z.-H. Liu, Z. Yang, and Z. Wang, Carbon 48, 4391 (2010).

    CAS  Article  Google Scholar 

  94. 94.

    G. Eda and M. Chhowalla, Nano Lett. 9, 814 (2009).

    CAS  Article  Google Scholar 

  95. 95.

    A. Yu, H.W. Park, A. Davies, D.C. Higgins, Z. Chen, and X. Xiao, J. Phys. Chem. Lett. 2, 1855 (2011).

    CAS  Article  Google Scholar 

  96. 96.

    T. Kim, H. Kim, S.W. Kwon, Y. Kim, W.K. Park, D.H. Yoon, A.-R. Jang, H.S. Shin, K.S. Suh, and W.S. Yang, Nano Lett. 12, 743 (2012).

    CAS  Article  Google Scholar 

  97. 97.

    A. Dimiev, D.V. Kosynkin, A. Sinitskii, A. Slesarev, Z. Sun, and J.M. Tour, Science 331, 1168 (2011).

    CAS  Article  Google Scholar 

  98. 98.

    N. Zhan, M. Olmedo, G. Wang, and J. Liu, Carbon 49, 2046 (2011).

    CAS  Article  Google Scholar 

  99. 99.

    S.J. An, Y. Zhu, S.H. Lee, M.D. Stoller, T. Emilsson, S. Park, A. Velamakanni, J. An, and R.S. Ruoff, J. Phys. Chem. Lett. 1, 1259 (2010).

    CAS  Article  Google Scholar 

  100. 100.

    S. Yin, Y. Zhang, J. Kong, C. Zou, C.M. Li, X. Lu, J. Ma, F.Y.C. Boey, and X. Chen, ACS Nano 5, 3831 (2011).

    CAS  Article  Google Scholar 

  101. 101.

    B.G. Choi, M. Yang, W.H. Hong, J.W. Choi, and Y.S. Huh, ACS Nano 6, 4020 (2012).

    CAS  Article  Google Scholar 

  102. 102.

    M. Li, S. Ishihara, M. Akada, M. Liao, L. Sang, J.P. Hill, V. Krishnan, Y. Ma, and K. Ariga, J. Am. Chem. Soc. 133, 7348 (2011).

    CAS  Article  Google Scholar 

  103. 103.

    P. Chaturbedy, H.R. Matte, R. Voggu, A. Govindaraj, and C. Rao, J. Colloid Interface Sci. 360, 249 (2011).

    CAS  Article  Google Scholar 

  104. 104.

    C. Bertoni, V. Skákalová, and S. Roth, Physica E 40, 2257 (2008).

    CAS  Article  Google Scholar 

  105. 105.

    S.W. Lee, N. Yabuuchi, B.M. Gallant, S. Chen, B.-S. Kim, P.T. Hammond, and Y. Shao-Horn, Nat. Nanotechnol. 5, 531 (2010).

    CAS  Article  Google Scholar 

  106. 106.

    L. Liu, X. Ye, K. Wu, Z. Zhou, D. Lee, and T. Cui, Sens. J. IEEE 9, 1308 (2009).

    CAS  Article  Google Scholar 

  107. 107.

    H. Yu, T. Cao, L. Zhou, E. Gu, D. Yu, and D. Jiang, Sens. Actuat. B Chem. 119, 512 (2006).

    CAS  Article  Google Scholar 

  108. 108.

    A. Baba, Y. Kanetsuna, S. Sriwichai, Y. Ohdaira, K. Shinbo, K. Kato, S. Phanichphant, and F. Kaneko, Thin Solid Films 518, 2200 (2010).

    CAS  Article  Google Scholar 

  109. 109.

    M.-W. Jang, C.-L. Chen, W.E. Partlo III, S.R. Patil, D. Lee, Z. Ye, D. Lilja, T.A. Taton, T. Cui, and S.A. Campbell, Appl. Phys. Lett. 98, 073502 (2011).

    Article  CAS  Google Scholar 

  110. 110.

    N. Adachi, T. Fukawa, Y. Tatewaki, H. Shirai, and M. Kimura, Macromol. Rapid Commun. 29, 1877 (2008).

    CAS  Article  Google Scholar 

  111. 111.

    T. Dobbins, R. Chevious, and Y. Lvov, Polymers 3, 942 (2011).

    CAS  Article  Google Scholar 

  112. 112.

    B.S. Kim, B. Kim, and K.D. Suh, J. Polym. Sci. Part A: Polym. Chem. 46, 1058 (2008).

    CAS  Article  Google Scholar 

  113. 113.

    J. Yuan, Z. Wang, Y. Zhang, Y. Shen, D. Han, Q. Zhang, X. Xu, and L. Niu, Thin Solid Films 516, 6531 (2008).

    CAS  Article  Google Scholar 

  114. 114.

    Y.T. Park, A.Y. Ham, and J.C. Grunlan, J. Phys. Chem. C 114, 6325 (2010).

    CAS  Article  Google Scholar 

  115. 115.

    B.S. Shim, Z. Tang, M.P. Morabito, A. Agarwal, H. Hong, and N.A. Kotov, Chem. Mater. 19, 5467 (2007).

    CAS  Article  Google Scholar 

  116. 116.

    W. Xue, Y. Liu, and T. Cui, Appl. Phys. Lett. 89, 163512 (2006).

    Article  CAS  Google Scholar 

  117. 117.

    H. Zheng, F. Tang, Y. Jia, L. Wang, Y. Chen, M. Lim, L. Zhang, and G.M. Lu, Carbon 47, 1534 (2009).

    CAS  Article  Google Scholar 

  118. 118.

    F. Rivadulla, C. Mateo-Mateo, and M. Correa-Duarte, J. Am. Chem. Soc. 132, 3751 (2010).

    CAS  Article  Google Scholar 

  119. 119.

    T.K. Gupta and S. Kumar, Fabrication of Carbon Nanotube/Polymer Nanocomposites, Carbon Nanotube-Reinforced Polymers (Amsterdam: Elsevier, 2018), p. 61.

    Google Scholar 

  120. 120.

    J. Shen, Y. Hu, C. Qin, and M. Ye, Langmuir 24, 3993 (2008).

    CAS  Article  Google Scholar 

  121. 121.

    L.-D. Zhou, Y.-H. Yan, H.-H. Yu, E.-D. Gu, and D.-S. Jiang, Trans. Nonferrous Met. Soc. China 16, 582 (2006).

    CAS  Article  Google Scholar 

  122. 122.

    D. Yu and L. Dai, J. Phys. Chem. Lett. 1, 467 (2010).

    CAS  Article  Google Scholar 

  123. 123.

    S. Zhang, Y. Shao, G. Yin, and Y. Lin, Appl. Catal. B 102, 372 (2011).

    Article  CAS  Google Scholar 

  124. 124.

    S. Srivastava, P. Podsiadlo, K. Critchley, J. Zhu, M. Qin, B.S. Shim, and N.A. Kotov, Chem. Mater. 21, 4397 (2009).

    CAS  Article  Google Scholar 

  125. 125.

    M. Zhang, L. Su, and L. Mao, Carbon 44, 276 (2006).

    CAS  Article  Google Scholar 

  126. 126.

    H.R. Byon, S.W. Lee, S. Chen, P.T. Hammond, and Y. Shao-Horn, Carbon 49, 457 (2011).

    CAS  Article  Google Scholar 

  127. 127.

    M.A. Correa-Duarte, A. Kosiorek, W. Kandulski, M. Giersig, and L.M. Liz-Marzan, Chem. Mater. 17, 3268 (2005).

    CAS  Article  Google Scholar 

  128. 128.

    N.I. Kovtyukhova and T.E. Mallouk, J. Phys. Chem. B 109, 2540 (2005).

    CAS  Article  Google Scholar 

  129. 129.

    C. Papadopoulos, Microelectron. Eng. 86, 840 (2009).

    CAS  Article  Google Scholar 

  130. 130.

    V.C. Tung, J.-H. Huang, I. Tevis, F. Kim, J. Kim, C.-W. Chu, S.I. Stupp, and J. Huang, J. Am. Chem. Soc. 133, 4940 (2011).

    CAS  Article  Google Scholar 

  131. 131.

    S.K. Hwang, J.M. Lee, S. Kim, J.S. Park, H.I. Park, C.W. Ahn, K.J. Lee, T. Lee, and S.O. Kim, Nano Lett. 12, 2217 (2012).

    CAS  Article  Google Scholar 

  132. 132.

    M. Mionić, K. Pataky, R. Gaal, A. Magrez, J. Brugger, and L. Forró, J. Mater. Chem. 22, 14030 (2012).

    Article  CAS  Google Scholar 

  133. 133.

    J. Zhang, C. Wang, Y. Fu, Y. Che, and C. Zhou, ACS Nano 5, 3284 (2011).

    CAS  Article  Google Scholar 

  134. 134.

    S.W. Lee, B.-S. Kim, S. Chen, Y. Shao-Horn, and P.T. Hammond, J. Am. Chem. Soc. 131, 671 (2009).

    CAS  Article  Google Scholar 

  135. 135.

    W. Wu, H. Niu, D. Yang, S.-B. Wang, J. Wang, J. Lin, and C. Hu, Energies 12, 363 (2019).

    CAS  Article  Google Scholar 

  136. 136.

    W. Wu, H. Niu, D. Yang, S. Wang, N. Jiang, J. Wang, J. Lin, and C. Hu, Polymers 10, 759 (2018).

    Article  CAS  Google Scholar 

  137. 137.

    J.R. Siqueira, R.C. Gabriel, and L.H. Gasparotto, J. Materi. Sci. 51, 8323 (2016).

    CAS  Article  Google Scholar 

  138. 138.

    A. Pavinatto, L.A. Mercante, C.S. Leandro, L.H. Mattoso, and D.S. Correa, J. Electroanal. Chem. 755, 215 (2015).

    CAS  Article  Google Scholar 

  139. 139.

    V. Pingitore, D. Miriello, E. Drioli, and A. Gugliuzza, Soft Matter 11, 4461 (2015).

    CAS  Article  Google Scholar 

  140. 140.

    Y.-Q. Ni, S. Ding, B. Han, and H. Wang, Sens. Actuators B Chem. 301, 127120 (2019).

    CAS  Article  Google Scholar 

  141. 141.

    M. Zhao, L. Meng, L. Ma, L. Ma, X. Yang, Y. Huang, J.E. Ryu, A. Shankar, T. Li, and C. Yan, Compos Sci Technol 154, 28 (2018).

    Article  CAS  Google Scholar 

  142. 142.

    D.P. Silva, C.M. Miyazaki, D.B. Mascagni, and M. Ferreira, J. Nanosci. Nanotechnol. 19, 5483 (2019).

    CAS  Article  Google Scholar 

  143. 143.

    J.-Y. Hong, K.-Y. Shin, O.S. Kwon, H. Kang, and J. Jang, Chem. Commun. 47, 7182 (2011).

    CAS  Article  Google Scholar 

  144. 144.

    V. Dilimon and S. Sampath, Thin Solid Films 519, 2323 (2011).

    CAS  Article  Google Scholar 

  145. 145.

    J.S. Park, S.M. Cho, W.-J. Kim, J. Park, and P.J. Yoo, ACS Appl. Mater. Interfaces 3, 360 (2011).

    CAS  Article  Google Scholar 

  146. 146.

    D. Wang and X. Wang, Langmuir 27, 2007 (2011).

    CAS  Article  Google Scholar 

  147. 147.

    C. Zhu, S. Guo, Y. Zhai, and S. Dong, Langmuir 26, 7614 (2010).

    CAS  Article  Google Scholar 

  148. 148.

    Z. Xu, N. Gao, and S. Dong, Talanta 68, 753 (2006).

    CAS  Article  Google Scholar 

  149. 149.

    H. Li, S. Pang, S. Wu, X. Feng, K. Müllen, and C. Bubeck, J. Am. Chem. Soc. 133, 9423 (2011).

    CAS  Article  Google Scholar 

  150. 150.

    A. Rani, K.A. Oh, H. Koo, H. Jung Lee, and M. Park, Appl. Surf. Sci. 257, 4982 (2011).

    CAS  Article  Google Scholar 

  151. 151.

    J. Lu, I. Do, H. Fukushima, I. Lee, and L.T. Drzal, J. Nanomater. 2010, 1 (2010).

    Google Scholar 

  152. 152.

    D.D. Kulkarni, I. Choi, S.S. Singamaneni, and V.V. Tsukruk, ACS Nano 4, 4667 (2010).

    CAS  Article  Google Scholar 

  153. 153.

    T.-K. Hong, D.W. Lee, H.J. Choi, H.S. Shin, and B.-S. Kim, ACS Nano 4, 3861 (2010).

    CAS  Article  Google Scholar 

  154. 154.

    N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, and A.D. Gorchinskiy, Chem. Mater. 11, 771 (1999).

    CAS  Article  Google Scholar 

  155. 155.

    Y. Zhu and J.M. Tour, Nano Lett. 10, 4356 (2010).

    CAS  Article  Google Scholar 

  156. 156.

    J. Hong, K. Char, and B.-S. Kim, J. Phys. Chem. Lett. 1, 3442 (2010).

    CAS  Article  Google Scholar 

  157. 157.

    J. Shen, Y. Hu, C. Li, C. Qin, M. Shi, and M. Ye, Langmuir 25, 6122 (2009).

    CAS  Article  Google Scholar 

  158. 158.

    D. Wang, R. Kou, D. Choi, Z. Yang, Z. Nie, J. Li, L.V. Saraf, D. Hu, J. Zhang, and G.L. Graff, ACS Nano 4, 1587 (2010).

    CAS  Article  Google Scholar 

  159. 159.

    Y. Gao, H.L. Yip, K.S. Chen, K.M. O’Malley, O. Acton, Y. Sun, G. Ting, H. Chen, and A.K.Y. Jen, Adv. Mater. 23, 1903 (2011).

    CAS  Article  Google Scholar 

  160. 160.

    J.O. Hwang, J.S. Park, D.S. Choi, J.Y. Kim, S.H. Lee, K.E. Lee, Y.-H. Kim, M.H. Song, S. Yoo, and S.O. Kim, ACS Nano 6, 159 (2012).

    CAS  Article  Google Scholar 

  161. 161.

    S. Chen, W. Cai, R.D. Piner, J.W. Suk, Y. Wu, Y. Ren, J. Kang, and R.S. Ruoff, Nano Lett. 11, 3519 (2011).

    CAS  Article  Google Scholar 

  162. 162.

    S. Huh, J. Park, K.S. Kim, B.H. Hong, and S.B. Kim, ACS Nano 5, 3639 (2011).

    CAS  Article  Google Scholar 

  163. 163.

    L. Huang, Y. Huang, J. Liang, X. Wan, and Y. Chen, Nano Res. 4, 675 (2011).

    CAS  Article  Google Scholar 

  164. 164.

    C.-L. Hsu, C.-T. Lin, J.-H. Huang, C.-W. Chu, K.-H. Wei, and L.-J. Li, ACS Nano 6, 5031 (2012).

    CAS  Article  Google Scholar 

  165. 165.

    W. Fan, C. Zhang, W.W. Tjiu, and T. Liu, J. Mater. Res. 28, 611 (2013).

    CAS  Article  Google Scholar 

  166. 166.

    P.H. Wöbkenberg, G. Eda, D.S. Leem, J.C. De Mello, D.D. Bradley, M. Chhowalla, and T.D. Anthopoulos, Adv. Mater. 23, 1558 (2011).

    Article  CAS  Google Scholar 

  167. 167.

    Z. Li, P. Wu, C. Wang, X. Fan, W. Zhang, X. Zhai, C. Zeng, Z. Li, J. Yang, and J. Hou, ACS Nano 5, 3385 (2011).

    CAS  Article  Google Scholar 

  168. 168.

    Z. Yan, Z. Peng, Z. Sun, J. Yao, Y. Zhu, Z. Liu, P.M. Ajayan, and J.M. Tour, ACS Nano 5, 8187 (2011).

    CAS  Article  Google Scholar 

  169. 169.

    G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, and Z. Bao, Nano Lett. 11, 4438 (2011).

    CAS  Article  Google Scholar 

  170. 170.

    Y. Ji, S. Lee, B. Cho, S. Song, and T. Lee, ACS Nano 5, 5995 (2011).

    CAS  Article  Google Scholar 

  171. 171.

    Y. Wu, K.A. Jenkins, A. Valdes-Garcia, D.B. Farmer, Y. Zhu, A.A. Bol, C. Dimitrakopoulos, W. Zhu, F. Xia, and P. Avouris, Nano Lett. 12, 3062 (2012).

    CAS  Article  Google Scholar 

  172. 172.

    S.-H. Bae, O. Kahya, B.K. Sharma, J. Kwon, H.J. Cho, B. Ozyilmaz, and J.-H. Ahn, ACS Nano 7, 3130 (2013).

    CAS  Article  Google Scholar 

  173. 173.

    X. Wang, J.-B. Xu, W. Xie, and J. Du, J. Phys. Chem. C 115, 7596 (2011).

    CAS  Article  Google Scholar 

  174. 174.

    J.J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B.G. Sumpter, A. Srivastava, M. Conway, A.L. Mohana Reddy, J. Yu, and R. Vajtai, Nano Lett. 11, 1423 (2011).

    CAS  Article  Google Scholar 

  175. 175.

    S. Li, Y. Luo, W. Lv, W. Yu, S. Wu, P. Hou, Q. Yang, Q. Meng, C. Liu, and H.M. Cheng, Adv. Energy Mater. 1, 486 (2011).

    CAS  Article  Google Scholar 

  176. 176.

    D. Wei, B. Wu, Y. Guo, G. Yu, and Y. Liu, Acc. Chem. Res. 46, 106 (2013).

    CAS  Article  Google Scholar 

  177. 177.

    A.W. Robertson and J.H. Warner, Nano Lett. 11, 1182 (2011).

    CAS  Article  Google Scholar 

  178. 178.

    Y.A. Wu, A.W. Robertson, F. Schäffel, S.C. Speller, and J.H. Warner, Chem. Mater. 23, 4543 (2011).

    CAS  Article  Google Scholar 

  179. 179.

    S. Qu, M. Li, L. Xie, X. Huang, J. Yang, N. Wang, and S. Yang, ACS Nano 7, 4070 (2013).

    CAS  Article  Google Scholar 

  180. 180.

    H. Hwang, P. Joo, M.S. Kang, G. Ahn, J.T. Han, B.-S. Kim, and J.H. Cho, ACS Nano 6, 2432 (2012).

    CAS  Article  Google Scholar 

  181. 181.

    Z.-D. Huang, B. Zhang, S.-W. Oh, Q.-B. Zheng, X.-Y. Lin, N. Yousefi, and J.-K. Kim, J. Mater. Chem. 22, 3591 (2012).

    CAS  Article  Google Scholar 

  182. 182.

    S.-K. Lee, B.J. Kim, H. Jang, S.C. Yoon, C. Lee, B.H. Hong, J.A. Rogers, J.H. Cho, and J.-H. Ahn, Nano Lett. 11, 4642 (2011).

    CAS  Article  Google Scholar 

  183. 183.

    D.D. Nguyen, N.-H. Tai, S.-Y. Chen, and Y.-L. Chueh, Nanoscale 4, 632 (2012).

    CAS  Article  Google Scholar 

  184. 184.

    Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, and X.-H. Xia, ACS Nano 5, 4350 (2011).

    CAS  Article  Google Scholar 

  185. 185.

    H. Bi, F. Huang, J. Liang, Y. Tang, X. Lü, X. Xie, and M. Jiang, J. Mater. Chem. 21, 17366 (2011).

    CAS  Article  Google Scholar 

  186. 186.

    H. Bi, S. Sun, F. Huang, X. Xie, and M. Jiang, J. Mater. Chem. 22, 411 (2012).

    CAS  Article  Google Scholar 

  187. 187.

    X. Hu, Z. Xu, and C. Gao, Sci. Rep. 2, 767 (2012).

    Article  CAS  Google Scholar 

  188. 188.

    J. Bai, L. Liao, H. Zhou, R. Cheng, L. Liu, Y. Huang, and X. Duan, Nano Lett. 11, 2555 (2011).

    CAS  Article  Google Scholar 

  189. 189.

    Z. Luo, Y. Lu, D.W. Singer, M.E. Berck, L.A. Somers, B.R. Goldsmith, and A.C. Johnson, Chem. Mater. 23, 1441 (2011).

    CAS  Article  Google Scholar 

  190. 190.

    Y. Yao, Z. Li, Z. Lin, K.-S. Moon, J. Agar, and C. Wong, J. Phys. Chem. C 115, 5232 (2011).

    CAS  Article  Google Scholar 

  191. 191.

    Y.-B. Tang, L.-C. Yin, Y. Yang, X.-H. Bo, Y.-L. Cao, H.-E. Wang, W.-J. Zhang, I. Bello, S.-T. Lee, and H.-M. Cheng, ACS Nano 6, 1970 (2012).

    CAS  Article  Google Scholar 

  192. 192.

    Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen, and S. Huang, ACS Nano 6, 205 (2012).

    CAS  Article  Google Scholar 

  193. 193.

    S.-E. Zhu, R. Shabani, J. Rho, Y. Kim, B.H. Hong, J.-H. Ahn, and H.J. Cho, Nano Lett. 11, 977 (2011).

    CAS  Article  Google Scholar 

  194. 194.

    H. Park, P.R. Brown, V. Bulovic, and J. Kong, Nano Lett. 12, 133 (2012).

    CAS  Article  Google Scholar 

  195. 195.

    W.A. De Heer, C. Berger, M. Ruan, M. Sprinkle, X. Li, Y. Hu, B. Zhang, J. Hankinson, and E. Conrad, Proc. Natl. Acad. Sci. 108, 16900 (2011).

    Article  Google Scholar 

  196. 196.

    L. Ji, Z. Tan, T. Kuykendall, E.J. An, Y. Fu, V. Battaglia, and Y. Zhang, Energy Environ. Sci. 4, 3611 (2011).

    CAS  Article  Google Scholar 

  197. 197.

    H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, and J.W. Choi, Nano Lett. 11, 2472 (2011).

    CAS  Article  Google Scholar 

  198. 198.

    X. Wang, H. Bai, and G. Shi, J. Am. Chem. Soc. 133, 6338 (2011).

    CAS  Article  Google Scholar 

  199. 199.

    W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek, P. Gaskell, A. Gruneis, D. Haberer, R. Bozek, and J. Krupka, Nano Lett. 11, 1786 (2011).

    CAS  Article  Google Scholar 

  200. 200.

    K.-X. Sheng, Y.-X. Xu, L. Chun, and G.-Q. Shi, New Carbon Mater. 26, 9 (2011).

    CAS  Article  Google Scholar 

  201. 201.

    Y. Zhu, Z. Sun, Z. Yan, Z. Jin, and J.M. Tour, ACS Nano 5, 6472 (2011).

    CAS  Article  Google Scholar 

  202. 202.

    Z. Liu, L. Song, S. Zhao, J. Huang, L. Ma, J. Zhang, J. Lou, and P.M. Ajayan, Nano Lett. 11, 2032 (2011).

    CAS  Article  Google Scholar 

  203. 203.

    D.W. Lee, T.-K. Hong, D. Kang, J. Lee, M. Heo, J.Y. Kim, B.-S. Kim, and H.S. Shin, J. Mater. Chem. 21, 3438 (2011).

    CAS  Article  Google Scholar 

  204. 204.

    Z. Li, J. Wang, X. Liu, S. Liu, J. Ou, and S. Yang, J. Mater. Chem. 21, 3397 (2011).

    CAS  Article  Google Scholar 

  205. 205.

    Y. Sun, X. Hu, W. Luo, and Y. Huang, ACS Nano 5, 7100 (2011).

    CAS  Article  Google Scholar 

  206. 206.

    J. Park, W.H. Lee, S. Huh, S.H. Sim, S.B. Kim, K. Cho, B.H. Hong, and K.S. Kim, J. Phys. Chem. Lett. 2, 841 (2011).

    CAS  Article  Google Scholar 

  207. 207.

    Q. Zheng, W.H. Ip, X. Lin, N. Yousefi, K.K. Yeung, Z. Li, and J.-K. Kim, ACS Nano 5, 6039 (2011).

    CAS  Article  Google Scholar 

  208. 208.

    K. Yan, H. Peng, Y. Zhou, H. Li, and Z. Liu, Nano Lett. 11, 1106 (2011).

    CAS  Article  Google Scholar 

  209. 209.

    H. Koga, T. Saito, T. Kitaoka, M. Nogi, K. Suganuma, and A. Isogai, Biomacromolecules 14, 1160 (2013).

    CAS  Article  Google Scholar 

  210. 210.

    L. Kou and C. Gao, Nanoscale 5, 4370 (2013).

    CAS  Article  Google Scholar 

  211. 211.

    C. Mao, J. Huang, Y. Zhu, W. Jiang, Q. Tang, and X. Ma, J. Phys. Chem. Lett. 4, 43 (2013).

    CAS  Article  Google Scholar 

  212. 212.

    Y. Zhu, W. Liu, X. Zhang, J. He, J. Chen, Y. Wang, and T. Cao, Langmuir 29, 744 (2013).

    CAS  Article  Google Scholar 

  213. 213.

    P. Zhao, Y. Luo, J. Yang, D. He, L. Kong, P. Zheng, and Q. Yang, Mater. Lett. 121, 74 (2014).

    CAS  Article  Google Scholar 

  214. 214.

    Y. Feng, X. Zhang, Y. Shen, K. Yoshino, and W. Feng, Carbohydr. Polym. 87, 644 (2012).

    CAS  Article  Google Scholar 

  215. 215.

    Y. Zhan, M. Lavorgna, G. Buonocore, and H. Xia, J. Mater. Chem. 22, 10464 (2012).

    CAS  Article  Google Scholar 

  216. 216.

    K.W. Putz, O.C. Compton, C. Segar, Z. An, S.T. Nguyen, and L.C. Brinson, ACS Nano 5, 6601 (2011).

    CAS  Article  Google Scholar 

  217. 217.

    A.K. Sarker and J.-D. Hong, Langmuir 28, 12637 (2012).

    CAS  Article  Google Scholar 

  218. 218.

    V.H. Pham, T.T. Dang, S.H. Hur, E.J. Kim, and J.S. Chung, ACS Appl. Mater. Interfaces 4, 2630 (2012).

    CAS  Article  Google Scholar 

  219. 219.

    W. Chen, P. Liu, Y. Liu, Q. Wang, and W. Duan, Chem. Eng. J. 353, 115 (2018).

    CAS  Article  Google Scholar 

  220. 220.

    G.E. Fenoy, B. Van der Schueren, J. Scotto, F. Boulmedais, M.R. Ceolín, S. Bégin-Colin, D. Bégin, W.A. Marmisollé, and O. Azzaroni, Electrochim. Acta 283, 1178 (2018).

    CAS  Article  Google Scholar 

  221. 221.

    M. He, L. Kang, C. Liu, Z. Lei, and Z.-H. Liu, Mater. Res. Bull. 68, 194 (2015).

    CAS  Article  Google Scholar 

  222. 222.

    A.I. Zvyagina, A.A. Shiryaev, A.E. Baranchikov, V.V. Chernyshev, Y.Y. Enakieva, O.A. Raitman, A.A. Ezhov, I.N. Meshkov, D.A. Grishanov, and O.S. Ivanova, New J. Chem. 41, 948 (2017).

    CAS  Article  Google Scholar 

  223. 223.

    S.J. Lee, Y.R. Lim, S. Ji, S.K. Kim, Y. Yoon, W. Song, S. Myung, J. Lim, K.-S. An, and J.-S. Park, Carbon 126, 241 (2018).

    CAS  Article  Google Scholar 

  224. 224.

    H.U. Lee and S.W. Kim, J. Mater. Chem. A 5, 13581 (2017).

    CAS  Article  Google Scholar 

  225. 225.

    J. Luo, Q. Ma, H. Gu, Y. Zheng, and X. Liu, Electrochim. Acta 173, 184 (2015).

    CAS  Article  Google Scholar 

  226. 226.

    X. Hong, B. Zhang, E. Murphy, J. Zou, and F. Kim, J. Power Sources 343, 60 (2017).

    CAS  Article  Google Scholar 

  227. 227.

    D.M. Sun, C. Liu, W.C. Ren, and H.M. Cheng, Small 9, 1188 (2013).

    CAS  Article  Google Scholar 

  228. 228.

    J. Zhang, J. Tan, Z. Ma, W. Xu, G. Zhao, H. Geng, C. Di, W. Hu, Z. Shuai, and K. Singh, J. Am. Chem. Soc. 135, 558 (2013).

    CAS  Article  Google Scholar 

  229. 229.

    J. Yang, M. Heo, H.J. Lee, S.-M. Park, J.Y. Kim, and H.S. Shin, ACS Nano 5, 8365 (2011).

    CAS  Article  Google Scholar 

  230. 230.

    Y.-J. Cheng, F.-Y. Cao, W.-C. Lin, C.-H. Chen, and C.-H. Hsieh, Chem. Mater. 23, 1512 (2011).

    CAS  Article  Google Scholar 

  231. 231.

    M. Valles-Pelarda, B.C. Hames, I.S. García-Benito, O. Almora, A. Molina-Ontoria, R.S. Sánchez, G. Garcia-Belmonte, N. Martín, and I. Mora-Sero, J. Phys. Chem. Lett. 7, 4622 (2016).

    CAS  Article  Google Scholar 

  232. 232.

    Z.-F. Cai, W.-L. Dong, T. Chen, H.-J. Yan, D. Wang, W. Xu, and L.-J. Wan, Chem. Commun. 54, 8052 (2018).

    CAS  Article  Google Scholar 

  233. 233.

    S. Kang, J. Zhang, L. Sang, L.K. Shrestha, Z. Zhang, P. Lu, F. Li, M. Li, and K. Ariga, ACS Appl. Mater. Interfaces 8, 24295 (2016).

    CAS  Article  Google Scholar 

  234. 234.

    S. Kang, L. Wang, J. Zhang, J. Du, M. Li, and Q. Chen, ACS Appl. Mater. Interfaces 9, 32179 (2017).

    CAS  Article  Google Scholar 

  235. 235.

    K. Sandeepa, K. Sajena, and J. Joseph, Fullerene Cluster Assisted Self-Assembly of Short DNA Strands Into Semiconducting Nanowires. (2017).

  236. 236.

    X. Liu, P. Li, Y. Zhang, X. Hu, Y. Duan, F. Li, D. Li, G. Shao, and Y. Song, J. Power Sources 413, 459 (2019).

    CAS  Article  Google Scholar 

  237. 237.

    A.S. Konev, A.F. Khlebnikov, O.V. Levin, D.A. Lukyanov, and I.M. Zorin, Chemsuschem 9, 676 (2016).

    CAS  Article  Google Scholar 

  238. 238.

    K. Vimalanathan, R.G. Shrestha, Z. Zhang, J. Zou, T. Nakayama, and C.L. Raston, Angew. Chem. 129, 8518 (2017).

    Article  Google Scholar 

  239. 239.

    K. Lee, B. Choi, I.J.L. Plante, M.V. Paley, X. Zhong, A.C. Crowther, J.S. Owen, X. Zhu, and X. Roy, Angew. Chem. 130, 6233 (2018).

    Article  Google Scholar 

  240. 240.

    B. Choi, J. Yu, D.W. Paley, M.T. Trinh, M.V. Paley, J.M. Karch, A.C. Crowther, C.-H. Lee, R.A. Lalancette, and X. Zhu, Nano Lett. 16, 1445 (2016).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sumanta Sahoo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rathanasamy, R., Sahoo, S., Lee, J.H. et al. Carbon-based Multi-layered Films for Electronic Application: A Review. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-020-08724-4

Download citation

Keywords

  • Layer-by-layer assembly
  • carbon nanotube
  • thin film
  • graphene
  • fullerene
  • electronic application