Structural and Electronic Calculations of CdTe Using DFT: Exchange–Correlation Functionals and DFT-1/2 Corrections

Abstract

Ab initio calculations were performed to investigate the structural and electronic properties of bulk CdTe using various exchange–correlation (XC) functionals available. Among the selected XC functionals include the local density approximation (LDA), generalized gradient approximation (GGA), meta-generalized gradient approximation (MGGA) (using the linear combination of atomic orbitals basis scheme) and Heyd–Scuseria–Ernzerhof-06 (HSE06) (using the plane-wave basis scheme). Further computational studies were performed based on the local density approximation-1/2 (LDA-1/2) and generalized gradient approximation-1/2 (GGA-1/2) self-energy correction schemes to verify their effect on the CdTe band gap in comparison to the other traditional XC functionals. The lattice parameter values obtained using different XC functionals (LDA, GGA and MGGA) were well in agreement with experimental value, with LDA predicting 6.548 Å. This is 1.02% greater than the experimental value of 6.482 Å. The electronic structure of CdTe was calculated for the fixed 6.482 Å lattice parameter of bulk CdTe and resulted in a band gap ranging between 0.68 and 1.56 eV for LDA, GGA, MGGA, and HSE06. The band gap values predicted by the LDA-1/2 and GGA-1/2 corrections were 1.47 eV and 1.50 eV, respectively, and are found to be in good agreement with experimental values. The influence of XC functionals and semi-empirical correction schemes are expected to have important implications on the prediction and understanding of bulk CdTe thin-films found in photovoltaic applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Lazard, Lazard’s Levelized Cost of Energy Analysis: Version 11.0. (Lazard, 2017). https://www.lazard.com/media/450337/lazard-levelized-cost-of-energy-version-110.pdf. Accessed 18 Nov 2018.

  2. 2.

    J. Poortmans, in Thin Film Solar Cells, ed. by J. Poortmans, V. Arkhipov (Wiley, England, 2006) p. 277.

  3. 3.

    H. Lee, S.W. Yoon, J.P. Ahn, Y.D. Suh, J.S. Lee, H. Lim, and D. Kim, Sol. Energy Mater. Sol. Cells 93, 779 (2011).

    Article  Google Scholar 

  4. 4.

    F. Giustino, Materials Modelling using Density Functional Theory, 1st ed. (United Kingdom: Oxford University Press, 2014).

    Google Scholar 

  5. 5.

    QuantumATK, DFT:LCAO. (QuantumATK, 2020) http://docs.quantumatk.com/manual/DFTLCAO.html. Accessed on 6 June 2017.

  6. 6.

    L.G. Ferreira, M. Marques, and L.K. Teles, AIP Adv. 1, 032119 (2011).

    Article  Google Scholar 

  7. 7.

    L.G. Ferreira, M. Marques, and L.K. Teles, Phys. Rev. B 78, 125116 (2008).

    Article  Google Scholar 

  8. 8.

    A.E. Merad, M.B. Kanoun, G. Merad, J. Cibert, and H. Aourag, Mater. Chem. Phys. 92, 333 (2005).

    CAS  Article  Google Scholar 

  9. 9.

    J.C. Slater, Adv. Quantum Chem. 6, 1 (1972).

    CAS  Article  Google Scholar 

  10. 10.

    J.F. Janak, Phys. Rev. B 18, 7165 (1978).

    CAS  Article  Google Scholar 

  11. 11.

    J. Hafner, J. Comput. Chem. 29, 2044 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    CAS  Article  Google Scholar 

  13. 13.

    S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P.A. Khomyakov, U.G. Vej-Hansen, M.-E. Lee, S.T. Chill, F. Rasmussen, G. Penazzi, F. Corsetti, A. Ojanperä, K. Jensen, M.L.N. Palsgaard, U. Martinez, A. Blom, M. Brandbyge, and K. Stokbro, J. Phys. Condens. Matter 32, 015901 (2019).

    Article  Google Scholar 

  14. 14.

    K. Hirose, T. Ono, Y. Fujimoto, and S. Tsukamoto, First-Principles Calculations in Real-Space Formalism (London: Imperial College Press, 2005).

    Google Scholar 

  15. 15.

    H. Zhu, G. Mingqiang, L. Huang, J. Wang, and X. Wu, Mater. Chem. Phys. 143, 637 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    L. Kantorovich, Quantum Theory of the Solid State: An Introduction (Dordrecht: Kluwer Academic Publishers, 2004).

    Google Scholar 

  17. 17.

    P.E. Blöchl, Phys. Rev. B 41, 5414 (1990).

    Article  Google Scholar 

  18. 18.

    M. Motta, C. Sun, A.T.K. Tan, M.J. O’Rourke, E. Ye, A.J. Minnich, F.G.S. Brando, and G.K.L. Chan, Nat. Phys. 16, 205 (2019).

    Article  Google Scholar 

  19. 19.

    J. Heyd, E.S. Gustavo, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

    CAS  Article  Google Scholar 

  20. 20.

    M.J. Watts, T. Fiducia, B. Sanyal, R. Smith, J.M. Walls, and P. Goddard, J. Phys. Condens. Matter. 32, 125702 (2020).

    CAS  Article  Google Scholar 

  21. 21.

    R. Kulkarni, S. Rondiya, A. Pawbake, R. Waykar, A. Jadhavar, V. Jadkar, A. Bhorde, A. Date, H. Pathan, and S. Jadkar, Energy Proc. 110, 188 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    T. Venkatachalem, C. Selvakumar, E. Ranjith, and K. Thangavel, J. Adv. Phys. 6, 235 (2017).

    Article  Google Scholar 

  23. 23.

    M. Ribeiro Jr, L.G. Ferreira, L.R.C. Fonseca, and R. Ramprasad, Mater. Sci. Eng. B 177, 1460 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    E.M. Proupin, A. Amézaga, and N.C. Hernández, Phys. B Condens. Matter 452, 119 (2014).

    Article  Google Scholar 

  25. 25.

    Y. Wu, G. Chen, Y. Zhu, W.-J. Yin, Y. Yan, M. Al-Jassim, and S.J. Pennycook, Comput. Mater. Sci. 98, 18 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    M. Ribeiro Jr, L.G. Ferreira, L.R.C. Fonseca, and R. Ramprasad, J. Appl. Phys. 111, 073708 (2012).

    Article  Google Scholar 

  27. 27.

    P. Pernot, B. Civalleri, D. Presti, and A. Savin, J. Phys. Chem. A 119, 5288 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    Y.D. Kim, M.V. Klein, S.F. Ren, Y.C. Chang, H. Luo, N. Samarth, and J.K. Furdyna, Phys. Rev. B 49, 7262 (1994).

    CAS  Article  Google Scholar 

  29. 29.

    D.E. Swanson, J.R. Sites, and W.S. Sampath, Sol. Energy Mater. Sol. Cells 159, 389 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    X. Gonze, J.-M. Beuken, R.F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph Ghosez, J.-Y. Raty, and D.C. Allan, Comput. Mater. Sci. 25, 478 (2002).

    Article  Google Scholar 

  31. 31.

    R. Leitsmann, F. Bechstedt, H. Groiss, F. Schaffler, W. Heiss, K. Koike, H. Harada, and M. Yano, J. Appl. Phys. 106, 043105 (2009).

    Article  Google Scholar 

  32. 32.

    C. Buurma, Ph.D. thesis, University of Illinois at Chicago, 2015.

  33. 33.

    J.E. Jaffe, T.C. Kaspar, T.C. Droubay, and T. Varga, J. Vac. Sci. Technol. A 31, 61102 (2013).

    Article  Google Scholar 

  34. 34.

    A.P. Nicholson, U. Martinez, A. Shah, A. Thiyagarajan, and W.S. Sampath, Appl. Surf. Sci. 528, 146832 (2020).

    CAS  Article  Google Scholar 

  35. 35.

    A. P. Nicholson, A. H. Munshi, U. Pozzoni, W. S. Sampath, First Principles Approach to CdTe/Te Interface Band Alignment Using Density Functional Theory and Nonequilibrium Green’s Function, in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC) (2018), p. 1932.

  36. 36.

    A. Thiyagarajan, W. Sampath, Analysis of the MgxZn1-xO/CdTe interface in CdTe thin film solar cells using Density Functional Theory (DFT), in 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) (2019) p. 0957.

Download references

Acknowledgments

The authors would like to thank Dr. Umberto Martinez for guidance with concepts of DFT and XC functionals. This work was supported by the Next Generation Photovoltaics Center through Engineering Technology Services (ETS) of Colorado State University. The main author would like to thank Mechanical Engineering department of Colorado State University for partial funding provided to support this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. A. Pochareddy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pochareddy, S.A., Nicholson, A.P., Thiyagarajan, A. et al. Structural and Electronic Calculations of CdTe Using DFT: Exchange–Correlation Functionals and DFT-1/2 Corrections. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-020-08720-8

Download citation

Keywords

  • Density functional theory (DFT)
  • LCAO
  • plane-wave
  • exchange energy
  • correlation energy
  • exchange–correlation functionals
  • LDA
  • GGA
  • MGGA
  • HSE06
  • DFT-1/2
  • Hartree potential
  • pseudopotential