Effect of Ni, Zn, Au, Sb and In on the Suppression of the Cu3Sn Phase in Sn-10 wt.%Cu Alloys


Since manufacturing is transitioning into Pb-free solder development for electronic assembly and packaging, consumer demands for more compact electronics have increased the importance of reliability issues brought about by the increased density of circuitry. Therefore, the role of alloying elements that can be added to common Pb-free solders such as Sn-Cu or Sn-Ag-Cu alloys in enhancing the properties and performance of the solder becomes important. Microstructural analysis along with direct observation in situ synchrotron radiography were used to study the effect of Ni, Zn, Au, In and Sb on the development of phases in Sn-10 wt.%Cu (Sn-10Cu). It was found that adding Ni and Zn to a Sn-10Cu alloy had the greatest impact on the microstructure with the Cu3Sn phase completely absent after these additions were made. Additions of Au and In also resulted in a reduction in the amount of Cu3Sn; however, the effect was not as pronounced. Removing the Cu3Sn phase from Sn-Cu Pb-free solder alloys is a possible approach for the design of more desirable microstructures that translate to better performance in modern electronic packaging.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Adapted from Ref. 39 with permission.

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    C. Gourlay and B. Arfaei, JOM 71, 131 (2019).

    Article  Google Scholar 

  2. 2.

    K.N. Reeve, J.R. Holaday, S.M. Choquette, I.E. Anderson, and C.A. Handwerker, J. Phase Equilib. 37, 369 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    M. Fazal, N. Liyana, S. Rubaiee, and A. Anas, Meas. 134, 897 (2019).

    Article  Google Scholar 

  4. 4.

    S. Cheng, C.-M. Huang, and M. Pecht, Microelec. Rel. 75, 77 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    W.R. Osório, L.C. Peixoto, L.R. Garcia, N. Mangelinck-Noël, and A. Garcia, J. Alloys Compd. 572, 97 (2013).

    Article  CAS  Google Scholar 

  6. 6.

    S. Chen, W. Zhou, and P. Wu, J. Electron. Mater. 44, 3920 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    C.-Y. Yu and J.-G. Duh, Scr. Mater. 65, 783 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    Y. Leong, A. Haseeb, H. Nishikawa, and O. Mokhtari, J. Mater. Sci. Mater. Electron. 30, 11914 (2019).

    CAS  Article  Google Scholar 

  9. 9.

    B. Chen and G. Li, Thin Solid Films 462, 395 (2004).

    Article  CAS  Google Scholar 

  10. 10.

    N. Wade, K. Wu, J. Kunii, S. Yamada, and K. Miyahara, J. Electron. Mater. 30, 1228 (2001).

    CAS  Article  Google Scholar 

  11. 11.

    G. Li, B. Chen, X. Shi, S.C. Wong, and Z. Wang, Thin Solid Films 504, 421 (2006).

    CAS  Article  Google Scholar 

  12. 12.

    J. Kivilahti, Helsinki University of Technology (1996).

  13. 13.

    L. Xu and J.H. Pang, Thin Solid Films 504, 362 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    M. Amagai, Microelectr. Rel. 48, 1 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    T. Laurila, V. Vuorinen, and M. Paulasto-Kröckel, Mater. Sci. Eng. R 68, 1 (2010).

  16. 16.

    C. Yang, F. Song, and S. R. Lee, in 2011 IEEE 61st Electronic Components and Technology Conference (ECTC) (IEEE, 2011).

  17. 17.

    K. Nogita, Intermetallics 18, 145 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    K. Nogita, C. Gourlay, and T. Nishimura, JOM 61, 45 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    K. Nogita and T. Nishimura, Scr. Mater. 59, 191 (2008).

    CAS  Article  Google Scholar 

  20. 20.

    K. Sweatman and T. Nishimura, IPC Printed Circuits Expo, APEX and the Desidners Summit. Osaka, Japan, 1 (2006).

  21. 21.

    G. Henshall et al., in Proceedings SMTA International (2008).

  22. 22.

    Y.-L. Tseng, Y.-C. Chang, and C.-C. Chen, J. Electron. Mater. 44, 581 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    S.-W. Chen, Y.-K. Chen, H.-J. Wu, Y.-C. Huang, and C.-M. Chen, J. Electron. Mater. 39, 2418 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    C. Du, X. Wang, and S. Tian, J. Mater. Sci. Mater. Electron. 29, 455 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    C.-H. Wang and S.-W. Chen, J. Mater. Res. 22, 3404 (2007).

    CAS  Article  Google Scholar 

  26. 26.

    Z. Lai, X. Kong, Q. You, and X. Cao, Microelectr. Rel. 68, 69 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Y.-C. Huang and S.-W. Chen, J. Electron. Mater. 40, 62 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    M.N. Bashir, A. Haseeb, A.Z.M.S. Rahman, and M. Fazal, J. Mater. Sci. Technol. 32, 1129 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    J. Jiang, S. Tsao, T. O’Sullivan, M. Razeghi, and G.J. Brown, Infra. Phys. Technol. 45, 143 (2004).

    CAS  Article  Google Scholar 

  30. 30.

    T. Ventura, C.M. Gourlay, K. Nogita, T. Nishimura, M. Rappaz, and A.K. Dahle, J. Electron. Mater. 37, 32 (2008).

    CAS  Article  Google Scholar 

  31. 31.

    S.U. Mehreen, K. Nogita, S. McDonald, H. Yasuda, and D. StJohn, J. Alloys Compd. 766, 1003 (2018).

    CAS  Article  Google Scholar 

  32. 32.

    J. Chen, Y.-S. Lai, C.-Y. Ren, and D.-J. Huang, Appl. Phys. Lett. 92, 081901 (2008).

    Article  CAS  Google Scholar 

  33. 33.

    T. Laurila, J. Hurtig, V. Vuorinen, and J.K. Kivilahti, Microelectr. Rel. 49, 242 (2009).

    CAS  Article  Google Scholar 

  34. 34.

    T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng. R 49, 1 (2005).

    Article  CAS  Google Scholar 

  35. 35.

    Y. Wang, Y. Lin, C. Tu, and C. Kao, J. Alloys Compd. 478, 121 (2009).

    CAS  Article  Google Scholar 

  36. 36.

    F. Wang, X. Ma, and Y. Qian, Scr. Mater. 53, 699 (2005).

    CAS  Article  Google Scholar 

  37. 37.

    S.K. Kang, D.-Y. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S.-I. Cho, J. Yu, and W.K. Choi, JOM 56, 34 (2004).

    CAS  Article  Google Scholar 

  38. 38.

    H. Yasuda, T. Nagira, M. Yoshiya, N. Nakatsuka, A. Sugiyama, K. Uesugi, and K. Umetani, ISIJ Int. 51, 402 (2011).

    CAS  Article  Google Scholar 

  39. 39.

    H. Yasuda, T. Nagira, M. Yoshiya, M. Uesugi, N. Nakatsuka, M. Kiire, A. Sugiyama, K. Uesugi, and K. Umetani, in IOP Conf. Ser. Mater. Sci. Eng (IOP Publishing, 2012), p. 012084.

  40. 40.

    C.-H. Lin, S.-W. Chen, and C.-H. Wang, J. Electron. Mater. 31, 907 (2002).

    CAS  Article  Google Scholar 

  41. 41.

    C.-H. Wang and S.-W. Chen, Acta Mater. 54, 247 (2006).

    CAS  Article  Google Scholar 

  42. 42.

    S.-W. Chen and C.-A. Chang, J. Electron. Mater. 33, 1071 (2004).

    CAS  Article  Google Scholar 

  43. 43.

    Y.-W. Yen, C.-Y. Lee, M.-H. Kuo, K.-S. Chao, and K.-D. Chen, Int. J. Mater. Res. 100, 672 (2009).

    CAS  Article  Google Scholar 

  44. 44.

    S. U. Mehreen, K. Nogita, S. McDonald, and D. StJohn, in IOP Conf. Ser. Mater. Sci. Eng (IOP Publishing, 2019), p. 012009.

  45. 45.

    D. StJohn, Acta Metall. 38, 631 (1990).

    CAS  Article  Google Scholar 

  46. 46.

    H.W. Kerr and W. Kurz, Int. Mater. Rev. 41, 129 (1996).

    CAS  Article  Google Scholar 

  47. 47.

    W. Zhai and B. Wei, Mater. Lett. 108, 145 (2013).

    CAS  Article  Google Scholar 

  48. 48.

    Z. Xuan, F. Mao, Z. Cao, T. Wang, and L. Zou, J. Alloys Compd. 721, 126 (2017).

    CAS  Article  Google Scholar 

  49. 49.

    B. Gao, E. Guo, X. Meng, S. Nie, H. Liang, Z. Cao, and T. Wang, Mater. Charact. 158, 109969 (2019).

    CAS  Article  Google Scholar 

  50. 50.

    K. Nogita, C. Gourlay, S. McDonald, Y. Wu, J. Read, and Q. Gu, Scr. Mater. 65, 922 (2011).

    CAS  Article  Google Scholar 

  51. 51.

    F. Gao, T. Takemoto, and H. Nishikawa, Mater. Sci. Eng. A 420, 39 (2006).

  52. 52.

    Y. Wang, C. Chang, and C. Kao, J. Alloys Compd. 478, L1 (2009).

    CAS  Article  Google Scholar 

Download references


The authors gratefully acknowledge financial support from the University of Queensland (UQ)-Nihon Superior (NS) collaboration research project and ARC Linkage Project (LP14010048) and ARC Discovery Project (DP200101949). Real-time observation experiments were performed at SPring-8 BL20XU (2016B1319, 2019A1149 and 2019B1185). The observations in SPring-8 were supported by Grant-in-Aid for Scientific Research (S) (No. 17H06155), JSPS, Japan. We also acknowledge travel funding (AS/IA191/14935) provided by the International Synchrotron Access Program (ISAP) managed by the Australian Synchrotron, part of ANSTO, and funded by the Australian Government. SEM imaging and EDS mapping were performed at the Centre for Microscopy and Microanalysis (CMM), The University of Queensland. Syeda U. Mehreen is financially supported by an Australian Postgraduate Award (APA).

Author information



Corresponding author

Correspondence to Syeda U. Mehreen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 2 (MP4 60042 kb)

Supplementary material 3 (MP4 16062 kb)

Supplementary material 1 (PDF 177 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mehreen, S.U., Nogita, K., McDonald, S.D. et al. Effect of Ni, Zn, Au, Sb and In on the Suppression of the Cu3Sn Phase in Sn-10 wt.%Cu Alloys. Journal of Elec Materi 50, 881–892 (2021). https://doi.org/10.1007/s11664-020-08709-3

Download citation


  • Cu3Sn
  • Pb-free solders
  • peritectic alloy
  • Sn-Cu solders
  • Cu6Sn5
  • solidification