Skip to main content
Log in

Effect of Ni, Zn, Au, Sb and In on the Suppression of the Cu3Sn Phase in Sn-10 wt.%Cu Alloys

  • TMS2020 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Since manufacturing is transitioning into Pb-free solder development for electronic assembly and packaging, consumer demands for more compact electronics have increased the importance of reliability issues brought about by the increased density of circuitry. Therefore, the role of alloying elements that can be added to common Pb-free solders such as Sn-Cu or Sn-Ag-Cu alloys in enhancing the properties and performance of the solder becomes important. Microstructural analysis along with direct observation in situ synchrotron radiography were used to study the effect of Ni, Zn, Au, In and Sb on the development of phases in Sn-10 wt.%Cu (Sn-10Cu). It was found that adding Ni and Zn to a Sn-10Cu alloy had the greatest impact on the microstructure with the Cu3Sn phase completely absent after these additions were made. Additions of Au and In also resulted in a reduction in the amount of Cu3Sn; however, the effect was not as pronounced. Removing the Cu3Sn phase from Sn-Cu Pb-free solder alloys is a possible approach for the design of more desirable microstructures that translate to better performance in modern electronic packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from Ref. 39 with permission.

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Gourlay and B. Arfaei, JOM 71, 131 (2019).

    Article  Google Scholar 

  2. K.N. Reeve, J.R. Holaday, S.M. Choquette, I.E. Anderson, and C.A. Handwerker, J. Phase Equilib. 37, 369 (2016).

    Article  CAS  Google Scholar 

  3. M. Fazal, N. Liyana, S. Rubaiee, and A. Anas, Meas. 134, 897 (2019).

    Article  Google Scholar 

  4. S. Cheng, C.-M. Huang, and M. Pecht, Microelec. Rel. 75, 77 (2017).

    Article  CAS  Google Scholar 

  5. W.R. Osório, L.C. Peixoto, L.R. Garcia, N. Mangelinck-Noël, and A. Garcia, J. Alloys Compd. 572, 97 (2013).

    Article  CAS  Google Scholar 

  6. S. Chen, W. Zhou, and P. Wu, J. Electron. Mater. 44, 3920 (2015).

    Article  CAS  Google Scholar 

  7. C.-Y. Yu and J.-G. Duh, Scr. Mater. 65, 783 (2011).

    Article  CAS  Google Scholar 

  8. Y. Leong, A. Haseeb, H. Nishikawa, and O. Mokhtari, J. Mater. Sci. Mater. Electron. 30, 11914 (2019).

    Article  CAS  Google Scholar 

  9. B. Chen and G. Li, Thin Solid Films 462, 395 (2004).

    Article  CAS  Google Scholar 

  10. N. Wade, K. Wu, J. Kunii, S. Yamada, and K. Miyahara, J. Electron. Mater. 30, 1228 (2001).

    Article  CAS  Google Scholar 

  11. G. Li, B. Chen, X. Shi, S.C. Wong, and Z. Wang, Thin Solid Films 504, 421 (2006).

    Article  CAS  Google Scholar 

  12. J. Kivilahti, Helsinki University of Technology (1996).

  13. L. Xu and J.H. Pang, Thin Solid Films 504, 362 (2006).

    Article  CAS  Google Scholar 

  14. M. Amagai, Microelectr. Rel. 48, 1 (2008).

    Article  CAS  Google Scholar 

  15. T. Laurila, V. Vuorinen, and M. Paulasto-Kröckel, Mater. Sci. Eng. R 68, 1 (2010).

  16. C. Yang, F. Song, and S. R. Lee, in 2011 IEEE 61st Electronic Components and Technology Conference (ECTC) (IEEE, 2011).

  17. K. Nogita, Intermetallics 18, 145 (2010).

    Article  CAS  Google Scholar 

  18. K. Nogita, C. Gourlay, and T. Nishimura, JOM 61, 45 (2009).

    Article  CAS  Google Scholar 

  19. K. Nogita and T. Nishimura, Scr. Mater. 59, 191 (2008).

    Article  CAS  Google Scholar 

  20. K. Sweatman and T. Nishimura, IPC Printed Circuits Expo, APEX and the Desidners Summit. Osaka, Japan, 1 (2006).

  21. G. Henshall et al., in Proceedings SMTA International (2008).

  22. Y.-L. Tseng, Y.-C. Chang, and C.-C. Chen, J. Electron. Mater. 44, 581 (2015).

    Article  CAS  Google Scholar 

  23. S.-W. Chen, Y.-K. Chen, H.-J. Wu, Y.-C. Huang, and C.-M. Chen, J. Electron. Mater. 39, 2418 (2010).

    Article  CAS  Google Scholar 

  24. C. Du, X. Wang, and S. Tian, J. Mater. Sci. Mater. Electron. 29, 455 (2018).

    Article  CAS  Google Scholar 

  25. C.-H. Wang and S.-W. Chen, J. Mater. Res. 22, 3404 (2007).

    Article  CAS  Google Scholar 

  26. Z. Lai, X. Kong, Q. You, and X. Cao, Microelectr. Rel. 68, 69 (2017).

    Article  CAS  Google Scholar 

  27. Y.-C. Huang and S.-W. Chen, J. Electron. Mater. 40, 62 (2011).

    Article  CAS  Google Scholar 

  28. M.N. Bashir, A. Haseeb, A.Z.M.S. Rahman, and M. Fazal, J. Mater. Sci. Technol. 32, 1129 (2016).

    Article  CAS  Google Scholar 

  29. J. Jiang, S. Tsao, T. O’Sullivan, M. Razeghi, and G.J. Brown, Infra. Phys. Technol. 45, 143 (2004).

    CAS  Google Scholar 

  30. T. Ventura, C.M. Gourlay, K. Nogita, T. Nishimura, M. Rappaz, and A.K. Dahle, J. Electron. Mater. 37, 32 (2008).

    Article  CAS  Google Scholar 

  31. S.U. Mehreen, K. Nogita, S. McDonald, H. Yasuda, and D. StJohn, J. Alloys Compd. 766, 1003 (2018).

    Article  CAS  Google Scholar 

  32. J. Chen, Y.-S. Lai, C.-Y. Ren, and D.-J. Huang, Appl. Phys. Lett. 92, 081901 (2008).

    Article  CAS  Google Scholar 

  33. T. Laurila, J. Hurtig, V. Vuorinen, and J.K. Kivilahti, Microelectr. Rel. 49, 242 (2009).

    Article  CAS  Google Scholar 

  34. T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng. R 49, 1 (2005).

    Article  CAS  Google Scholar 

  35. Y. Wang, Y. Lin, C. Tu, and C. Kao, J. Alloys Compd. 478, 121 (2009).

    Article  CAS  Google Scholar 

  36. F. Wang, X. Ma, and Y. Qian, Scr. Mater. 53, 699 (2005).

    Article  CAS  Google Scholar 

  37. S.K. Kang, D.-Y. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S.-I. Cho, J. Yu, and W.K. Choi, JOM 56, 34 (2004).

    Article  CAS  Google Scholar 

  38. H. Yasuda, T. Nagira, M. Yoshiya, N. Nakatsuka, A. Sugiyama, K. Uesugi, and K. Umetani, ISIJ Int. 51, 402 (2011).

    Article  CAS  Google Scholar 

  39. H. Yasuda, T. Nagira, M. Yoshiya, M. Uesugi, N. Nakatsuka, M. Kiire, A. Sugiyama, K. Uesugi, and K. Umetani, in IOP Conf. Ser. Mater. Sci. Eng (IOP Publishing, 2012), p. 012084.

  40. C.-H. Lin, S.-W. Chen, and C.-H. Wang, J. Electron. Mater. 31, 907 (2002).

    Article  CAS  Google Scholar 

  41. C.-H. Wang and S.-W. Chen, Acta Mater. 54, 247 (2006).

    Article  CAS  Google Scholar 

  42. S.-W. Chen and C.-A. Chang, J. Electron. Mater. 33, 1071 (2004).

    Article  CAS  Google Scholar 

  43. Y.-W. Yen, C.-Y. Lee, M.-H. Kuo, K.-S. Chao, and K.-D. Chen, Int. J. Mater. Res. 100, 672 (2009).

    Article  CAS  Google Scholar 

  44. S. U. Mehreen, K. Nogita, S. McDonald, and D. StJohn, in IOP Conf. Ser. Mater. Sci. Eng (IOP Publishing, 2019), p. 012009.

  45. D. StJohn, Acta Metall. 38, 631 (1990).

    Article  CAS  Google Scholar 

  46. H.W. Kerr and W. Kurz, Int. Mater. Rev. 41, 129 (1996).

    Article  CAS  Google Scholar 

  47. W. Zhai and B. Wei, Mater. Lett. 108, 145 (2013).

    Article  CAS  Google Scholar 

  48. Z. Xuan, F. Mao, Z. Cao, T. Wang, and L. Zou, J. Alloys Compd. 721, 126 (2017).

    Article  CAS  Google Scholar 

  49. B. Gao, E. Guo, X. Meng, S. Nie, H. Liang, Z. Cao, and T. Wang, Mater. Charact. 158, 109969 (2019).

    Article  CAS  Google Scholar 

  50. K. Nogita, C. Gourlay, S. McDonald, Y. Wu, J. Read, and Q. Gu, Scr. Mater. 65, 922 (2011).

    Article  CAS  Google Scholar 

  51. F. Gao, T. Takemoto, and H. Nishikawa, Mater. Sci. Eng. A 420, 39 (2006).

  52. Y. Wang, C. Chang, and C. Kao, J. Alloys Compd. 478, L1 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the University of Queensland (UQ)-Nihon Superior (NS) collaboration research project and ARC Linkage Project (LP14010048) and ARC Discovery Project (DP200101949). Real-time observation experiments were performed at SPring-8 BL20XU (2016B1319, 2019A1149 and 2019B1185). The observations in SPring-8 were supported by Grant-in-Aid for Scientific Research (S) (No. 17H06155), JSPS, Japan. We also acknowledge travel funding (AS/IA191/14935) provided by the International Synchrotron Access Program (ISAP) managed by the Australian Synchrotron, part of ANSTO, and funded by the Australian Government. SEM imaging and EDS mapping were performed at the Centre for Microscopy and Microanalysis (CMM), The University of Queensland. Syeda U. Mehreen is financially supported by an Australian Postgraduate Award (APA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syeda U. Mehreen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 177 kb)

Supplementary material 2 (MP4 60042 kb)

Supplementary material 3 (MP4 16062 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehreen, S.U., Nogita, K., McDonald, S.D. et al. Effect of Ni, Zn, Au, Sb and In on the Suppression of the Cu3Sn Phase in Sn-10 wt.%Cu Alloys. J. Electron. Mater. 50, 881–892 (2021). https://doi.org/10.1007/s11664-020-08709-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08709-3

Keywords

Navigation