First-Principles Study of Structural, Electronic, Magnetic and Elastic Properties of the Mn2XSb (X = Co, Fe) Inverse Heusler Alloys

Abstract

We predicted the electronic structure and half-metallic properties of the Mn2XSb (X = Co, Fe) inverse Heusler alloys using the full-potential linearized augmented plane wave (FPLAPW) method. We used generalized gradient approximation (GGA) and GGA + U schemes to compute the electronic structure for both alloys. We employed the Tran and Blaha modified Becke–Johnson (TB-mBJ) potential to accurately estimate the band gap. The stability has been determined by calculating their formation energy and elastic constants under ambient conditions. Both alloys show a half-metallic ferromagnetic nature with a 100% spin polarization at the Fermi level. The calculated total spin magnetic moments of Mn2XSb (X = Co, Fe) alloys are \( 4\upmu_{B} \) and \( 3\upmu_{B} \), respectively, which is a good agreement with the well-known Slater–Pauling rule of 24. The predicted Curie temperature for both alloys is greater than room temperature. The half-metallic and high spin polarization properties make them one of the promising candidates for spintronic device applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    R.A. de Groot, F.M. Mueller, P.G. van Engen, and K.H.J. Buschow, Phys. Rev. Lett. (1983). https://doi.org/10.1103/physrevlett.50.2024.

    Article  Google Scholar 

  2. 2.

    A. Aryal, S. Bakkar, H. Samassekou, and D. Mazumdar, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.153770.

    Article  Google Scholar 

  3. 3.

    R. Dhakal, S. Nepal, R. Ray, and C.G. Kaphle, J. Magn. Magn. (2020). https://doi.org/10.1016/j.jmmm.2020.166588.

    Article  Google Scholar 

  4. 4.

    D.N.A. Baker, M.S. Abu-Jafar, and R. Khenata, Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2019.122122.

    Article  Google Scholar 

  5. 5.

    R.Y. Umetsu, H. Fujiwara, and K. Nagai, cond-mat. mtrl-sci (2018). https://doi.org/10.1103/physrevb.99.134414.

    Article  Google Scholar 

  6. 6.

    H. Luo, Z. Zhu, and G. Liu, J. Magn. Magn. Mater. (2008). https://doi.org/10.1016/j.jmmm.2007.06.021.

    Article  Google Scholar 

  7. 7.

    H.Z. Luo, H.W. Zhang, and H.B. Xu, J. Appl. Phys. (2008). https://doi.org/10.1063/1.2903057.

    Article  Google Scholar 

  8. 8.

    Li Fan, Feng Chen, and Zhi-Qian Chen, J. Magn. Magn. Mater. (2020). https://doi.org/10.1016/j.jmmm.2019.166060.

    Article  Google Scholar 

  9. 9.

    P. Blaha and K. Schwarz, Comput. Phys. Commun. (1999). https://doi.org/10.1016/0010-4655(90)90187-6.

    Article  Google Scholar 

  10. 10.

    M. Ram, A. Saxena, and A. Shankar, RSC Adv. (2020). https://doi.org/10.1039/C9RA09303F.

    Article  Google Scholar 

  11. 11.

    L. Siakeng, G.M. Mikhailov, and D.P. Rai, J. Mater. Chem. (2018). https://doi.org/10.1039/C8TC02530D.

    Article  Google Scholar 

  12. 12.

    D. Van der Marel and G.A. Sawatzky, PRB. (2015). https://doi.org/10.1103/PhysRevB.37.10674.

    Article  Google Scholar 

  13. 13.

    F. Tran and P. Blaha, Phys. Rev. Lett. (2009). https://doi.org/10.1103/PhysRevLett.102.226401.

    Article  Google Scholar 

  14. 14.

    X. Dai, G. Liu, and G. Wu, Solid State Commun. (2006). https://doi.org/10.1016/j.ssc.2006.09.030.

    Article  Google Scholar 

  15. 15.

    X.P. Wei, W. Sun, and X.F. Zhu, J. Solid State Chem. (2017). https://doi.org/10.1016/j.jssc.2017.01.002.

    Article  Google Scholar 

  16. 16.

    P.L. Yan, J. Zhang, and K.W. Xu, J. Phys. D Appl. Phys. (2016). https://doi.org/10.1088/0022-3727/49/25/255002.

    Article  Google Scholar 

  17. 17.

    S.A. Khandy, I. Islam, and A. Laref, J. Solid State Chem. (2019). https://doi.org/10.1016/j.jssc.2018.11.011.

    Article  Google Scholar 

  18. 18.

    M. Jamal and H.R. Aliabad, Comput. Mater. Sci. (2014). https://doi.org/10.1016/j.commatsci.2014.08.027.

    Article  Google Scholar 

  19. 19.

    W. Everhart and J. Newkirk, Heliyon (2019). https://doi.org/10.1016/j.heliyon.2019.e01578.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Mahendran.

Ethics declarations

Conflict of interest

The authors M. Mahendran and V. Aravindan acknowledge the financial support by the UGC-DAE Consortium for Scientific Research, Mumbai under the collaborative research scheme through Grant No. CRS-M-259.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aravindan, V., Rajarajan, A.K. & Mahendran, M. First-Principles Study of Structural, Electronic, Magnetic and Elastic Properties of the Mn2XSb (X = Co, Fe) Inverse Heusler Alloys. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-020-08688-5

Download citation

Keywords

  • Inverse Heusler alloys
  • half-metallic ferromagnetism
  • first-principles calculations
  • spintronics