Structural and Optical Investigations of Ce3+/Mn2+-Doped LaPO4 Phosphors

Abstract

Lanthanum orthophosphate (LaPO4) and La0.95−xCe0.05MnxPO4 (x = 0.00, 0.03, 0.10) phosphors were synthesized by a simple and cost-efficient co-precipitation method and the formation of LaPO4 nanorods with a monoclinic P21/n crystal structure was observed. X-ray diffraction pattern analysis indicated a slight distortion of the LaPO4 crystalline structure and an increase of the lattice strain as a consequence of the Mn2+ and Ce3+ dopants incorporation in the host matrix. Scanning electron microscopy revealed that the microstructure of all powders consists of agglomerations of nanorods, which are around 17 ± 3 nm in diameter and length ranging from 100 nm to 300 nm. Electron paramagnetic resonance measurements have indicated the presence of Mn2+ in isolated species, but also as agglomerates. Ce3+ and Mn2+ doping of LaPO4 resulted also in a decrease of the band gap up to 4.70 eV compared to the un-doped sample. Because of an energy transfer effect from Ce3+ to Mn2+ ions, green emission of Mn2+ ions at around 550 nm was observed upon 275 nm excitation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    S.N. Achary, S. Bevara, and A.K. Tyagi, S.N. Achary, S. Bevara, and A.K. Tyagi, Coord. Chem. Rev., 2017, 340, p 266.

    CAS  Article  Google Scholar 

  2. 2.

    X.Y. Huang, J.X. Wang, D.C. Yu, S. Ye, Q.Y. Zhang, and X.W. Sun, X.Y. Huang, J.X. Wang, D.C. Yu, S. Ye, Q.Y. Zhang, and X.W. Sun, J. Appl. Phys., 2011, 109, p 1.

    Google Scholar 

  3. 3.

    J. Day, S. Senthilarasu, and T.K. Mallick, J. Day, S. Senthilarasu, and T.K. Mallick, Renew. Energy, 2019, 132, p 186.

    Article  Google Scholar 

  4. 4.

    P. Indira, S.K. Rao, and K.V.R. Murthy, in AIP Conference Proceedings (2019), p. 030021.

  5. 5.

    M. Leskelä, and L. Niinistö, M. Leskelä, and L. Niinistö, in Handbook on the Physics and Chemistry of Rare Earths. K.A. Gschneidner Jr., and L. Eyring Eds., Elsevier, Amsterdam, 1986, p 203

    Google Scholar 

  6. 6.

    W.S. Song, H.N. Choi, Y.S. Kim, and H. Yang, W.S. Song, H.N. Choi, Y.S. Kim, and H. Yang, J. Mater. Chem., 2010, 20, p 6929.

    CAS  Article  Google Scholar 

  7. 7.

    G.V.L. Reddy, L.R. Moorthy, T. Chengaiah, and B.C. Jamalaiah, G.V.L. Reddy, L.R. Moorthy, T. Chengaiah, and B.C. Jamalaiah, Ceram. Int., 2014, 40, p 3399.

    CAS  Article  Google Scholar 

  8. 8.

    Y. Xia, Y. Huang, Q. Long, S. Liao, Y. Gao, J. Liang, and J. Cai, Y. Xia, Y. Huang, Q. Long, S. Liao, Y. Gao, J. Liang, and J. Cai, Ceram. Int., 2015, 41, p 5525.

    CAS  Article  Google Scholar 

  9. 9.

    S. Van Loy, K. Binnemans, and T. Van Gerven, S. Van Loy, K. Binnemans, and T. Van Gerven, J. Clean. Prod., 2017, 156, p 226.

    Article  CAS  Google Scholar 

  10. 10.

    C.K. Hong, H.S. Ko, E.M. Han, J.J. Yun, and K.H. Park, C.K. Hong, H.S. Ko, E.M. Han, J.J. Yun, and K.H. Park, Nanoscale Res. Lett., 2013, 8, p 1.

    Article  CAS  Google Scholar 

  11. 11.

    S. Lee, K. Teshima, S. Mori, M. Endo, and S. Oishi, S. Lee, K. Teshima, S. Mori, M. Endo, and S. Oishi, Cryst. Growth Des., 2010, 10, p 1693.

    CAS  Article  Google Scholar 

  12. 12.

    B.C. Rowan, L.R. Wilson, B.S. Richards, and IEEE, , B.C. Rowan, L.R. Wilson, and B.S. Richards, IEEE J. Sel. Top. Quantum Electron., 2008, 14, p 1312.

    CAS  Article  Google Scholar 

  13. 13.

    T. Gavrilović, J. Periša, J. Papan, K. Vuković, K. Smits, D.J. Jovanović, and M.D. Dramićanin, T. Gavrilović, J. Periša, J. Papan, K. Vuković, K. Smits, D.J. Jovanović, and M.D. Dramićanin, J. Lumin., 2018, 195, p 420.

    Article  CAS  Google Scholar 

  14. 14.

    M. Zhao, Z. Zhao, L. Yang, L. Dong, A. Xia, S. Chang, Y. Wei, and Z. Liu, M. Zhao, Z. Zhao, L. Yang, L. Dong, A. Xia, S. Chang, Y. Wei, and Z. Liu, J. Lumin., 2018, 194, p 297.

    CAS  Article  Google Scholar 

  15. 15.

    H. Dong, Y. Liu, P. Yang, W. Wang, and J. Lin, H. Dong, Y. Liu, P. Yang, W. Wang, and J. Lin, Solid State Sci., 2010, 12, p 1652.

    CAS  Article  Google Scholar 

  16. 16.

    R. Martínez-Martínez, A. Speghini, M. Bettinelli, C. Falcony, and U. Caldiño, R. Martínez-Martínez, A. Speghini, M. Bettinelli, C. Falcony, and U. Caldiño, J. Lumin., 2009, 129, p 1276.

    Article  CAS  Google Scholar 

  17. 17.

    J. Fan, J. Gou, Y. Chen, B. Yu, and S.F. Liu, J. Fan, J. Gou, Y. Chen, B. Yu, and S.F. Liu, J. Alloys Compd., 2018, 731, p 796.

    CAS  Article  Google Scholar 

  18. 18.

    D. Ghosh, K. Biswas, S. Balaji, and K. Annapurna, D. Ghosh, K. Biswas, S. Balaji, and K. Annapurna, J. Lumin., 2017, 183, p 143.

    CAS  Article  Google Scholar 

  19. 19.

    S. Lucas, E. Champion, D. Bregiroux, D. Bernache-Assollant, and F. Audubert, S. Lucas, E. Champion, D. Bregiroux, D. Bernache-Assollant, and F. Audubert, J. Solid State Chem., 2004, 177, p 1302.

    CAS  Article  Google Scholar 

  20. 20.

    W. Ruigang, P. Wei, C. Jian, F. Minghao, C. Zhenzhu, and L. Yongming, W. Ruigang, P. Wei, C. Jian, F. Minghao, C. Zhenzhu, and L. Yongming, Mater. Chem. Phys., 2003, 79, p 30.

    Article  Google Scholar 

  21. 21.

    K. Byrappa, M.K. Devaraju, J.R. Paramesh, B. Basavalingu, and K. Soga, K. Byrappa, M.K. Devaraju, J.R. Paramesh, B. Basavalingu, and K. Soga, J. Mater. Sci., 2008, 43, p 2229.

    CAS  Article  Google Scholar 

  22. 22.

    L. Yu, H. Song, S. Lu, Z. Liu, L. Yang, and X. Kong, L. Yu, H. Song, S. Lu, Z. Liu, L. Yang, and X. Kong, J. Phys. Chem. B, 2004, 108, p 16697.

    CAS  Article  Google Scholar 

  23. 23.

    C. Wu, Y. Wang, and W. Jie, C. Wu, Y. Wang, and W. Jie, J. Alloys Compd., 2007, 436, p 383.

    CAS  Article  Google Scholar 

  24. 24.

    M. Ferhi, K. Horchani-Naifer, and M. Férid, M. Ferhi, K. Horchani-Naifer, and M. Férid, J. Lumin., 2008, 128, p 1777.

    CAS  Article  Google Scholar 

  25. 25.

    G. Rui, Q. Dong, and L. Wei, G. Rui, Q. Dong, and L. Wei, Trans. Nonferrous Metals Soc. China, 2010, 20, p 432.

    Article  CAS  Google Scholar 

  26. 26.

    M. Ferhi, K. Horchani-Naifer, and M. Férid, M. Ferhi, K. Horchani-Naifer, and M. Férid, J. Rare Earths, 2009, 27, p 182.

    Article  Google Scholar 

  27. 27.

    G.U. Caldino, and J. Condens, G.U. Caldino, and J. Condens, Matter Phys., 2003, 15, p 7127.

    Article  Google Scholar 

  28. 28.

    Y. Ding, L.B. Liang, M. Li, D.F. He, L. Xu, P. Wang, and X.F. Yu, Y. Ding, L.B. Liang, M. Li, D.F. He, L. Xu, P. Wang, and X.F. Yu, Nanoscale Res. Lett., 2011, 6, p 119.

    Article  CAS  Google Scholar 

  29. 29.

    D. Curie, Luminescence in Crystals, 1st edn. Methuen, London, 1963, p 142–174

    Google Scholar 

  30. 30.

    P.I. Paulose, G. Jose, V. Thomas, N.V. Unnikrishnan, and M.K.R. Warrier, P.I. Paulose, G. Jose, V. Thomas, N.V. Unnikrishnan, and M.K.R. Warrier, J. Phys. Chem. Solids, 2003, 64, p 841.

    CAS  Article  Google Scholar 

  31. 31.

    R. Martínez-Martínez, M. García-Hipólito, F. Ramos-Brito, J.L. Hernández-Pozos, U. Caldiño, and C. Falcony, R. Martínez-Martínez, M. García-Hipólito, F. Ramos-Brito, J.L. Hernández-Pozos, U. Caldiño, and C. Falcony, J. Phys. Condens. Matter, 2005, 17, p 3647.

    Article  CAS  Google Scholar 

  32. 32.

    U. Caldino, J.L. Hernandez-Pozos, C. Flores, A. Speghini, and M. Bettinelli, U. Caldino, J.L. Hernandez-Pozos, C. Flores, A. Speghini, and M. Bettinelli, J. Phys. Condens. Matter, 2005, 17, p 7297.

    CAS  Article  Google Scholar 

  33. 33.

    J.I. Langford, J.I. Langford, Prog. Cryst. Growth Charact., 1987, 14, p 185.

    CAS  Article  Google Scholar 

  34. 34.

    V.D. Mote, Y. Purushotham, and B.N. Dole, V.D. Mote, Y. Purushotham, and B.N. Dole, J. Theor. Appl. Phys., 2012, 6, p 6.

    Article  Google Scholar 

  35. 35.

    J. Kropiwnicka, J. Kropiwnicka, J. Therm. Anal., 1990, 36, p 979.

    CAS  Article  Google Scholar 

  36. 36.

    M.A. Ahmadzadeh, S.F. Chini, and A. Sadeghi, M.A. Ahmadzadeh, S.F. Chini, and A. Sadeghi, Mater. Des., 2019, 181, p 108058.

    CAS  Article  Google Scholar 

  37. 37.

    R. Kijkowska, E. Cholewka, and B. Duszak, R. Kijkowska, E. Cholewka, and B. Duszak, J. Mater. Sci., 2003, 38, p 223.

    CAS  Article  Google Scholar 

  38. 38.

    R. Kijkowska, R. Kijkowska, J. Mater. Sci., 2003, 38, p 229.

    CAS  Article  Google Scholar 

  39. 39.

    K. Rajesh, P. Shajesh, O. Seidel, P. Mukundan, and K.G. Warrier, K. Rajesh, P. Shajesh, O. Seidel, P. Mukundan, and K.G. Warrier, Adv. Funct. Mater., 2007, 17, p 1682.

    CAS  Article  Google Scholar 

  40. 40.

    R. Komban, K. Koempe, and M. Haase, R. Komban, K. Koempe, and M. Haase, Cryst. Growth Des., 2011, 11, p 1033.

    CAS  Article  Google Scholar 

  41. 41.

    P. Scardi, and M. Leoni, P. Scardi, and M. Leoni, Acta Crystallogr. A, 2001, 57, p 604.

    CAS  Article  Google Scholar 

  42. 42.

    E.J. Mittemeijer, U. Welzel, and Z. Kristallogr, E.J. Mittemeijer, U. Welzel, and Z. Kristallogr, Cryst. Mater., 2008, 223, p 552.

    CAS  Google Scholar 

  43. 43.

    M. Puchalska, and E. Zych, M. Puchalska, and E. Zych, Opt. Mater., 2017, 74, p 2.

    CAS  Article  Google Scholar 

  44. 44.

    J.M. Dance, J.J. Videau, and J. Portier, J.M. Dance, J.J. Videau, and J. Portier, J. Non-Cryst. Solids, 1986, 86, p 88.

    CAS  Article  Google Scholar 

  45. 45.

    M. Kitaura, S. Watanabe, K. Ogasawara, A. Ohnishi, and M. Sasaki, M. Kitaura, S. Watanabe, K. Ogasawara, A. Ohnishi, and M. Sasaki, in The DV-Xα Molecular-Orbital Calculation Method. T. Ishii, H. Wakita, K. Ogasawara, and Y.S. Kim Eds., Springer, Heidelberg, 2015, p 217

    Google Scholar 

  46. 46.

    M. Kitaura, Y. Nakajima, M. Kaneyoshi, and H. Nakagawa, M. Kitaura, Y. Nakajima, M. Kaneyoshi, and H. Nakagawa, Jpn. J. Appl. Phys., 2007, 46, p 6691.

    CAS  Article  Google Scholar 

  47. 47.

    T.H. Yeom, Y.H. Lee, T.S. Hahn, M.H. Oh, and S.H. Choh, T.H. Yeom, Y.H. Lee, T.S. Hahn, M.H. Oh, and S.H. Choh, J. Appl. Phys., 1996, 79, p 1004.

    CAS  Article  Google Scholar 

  48. 48.

    G. Li, L. Li, M. Li, Y. Song, H. Zou, L. Zou, X. Xu, and S. Gan, G. Li, L. Li, M. Li, Y. Song, H. Zou, L. Zou, X. Xu, and S. Gan, Mater. Chem. Phys., 2012, 133, p 263.

    CAS  Article  Google Scholar 

  49. 49.

    G. Phaomei, W.R. Singh, and R.S. Ningthoujam, G. Phaomei, W.R. Singh, and R.S. Ningthoujam, J. Lumin., 2011, 131, p 1164.

    CAS  Article  Google Scholar 

  50. 50.

    D.F. Mullica, W.O. Milligan, D.A. Grossie, G.W. Beall, and L.A. Boatner, D.F. Mullica, W.O. Milligan, D.A. Grossie, G.W. Beall, and L.A. Boatner, Inorg. Chim. Acta, 1984, 95, p 231.

    CAS  Article  Google Scholar 

  51. 51.

    S.K. Gupta, P.S. Ghosh, M. Sahu, K. Bhattacharyya, R. Tewari, and V. Natarajan, S.K. Gupta, P.S. Ghosh, M. Sahu, K. Bhattacharyya, R. Tewari, and V. Natarajan, RSC Adv., 2015, 5, p 58832.

    CAS  Article  Google Scholar 

  52. 52.

    R. Köferstein, L. Jäger, and S.G. Ebbinghaus, R. Köferstein, L. Jäger, and S.G. Ebbinghaus, Solid State Ion., 2013, 249, p 1.

    Article  CAS  Google Scholar 

  53. 53.

    D.T.M. Huong, L.T. Trang, L.V. Vu, and N.N. Long, D.T.M. Huong, L.T. Trang, L.V. Vu, and N.N. Long, J. Alloys Compd., 2014, 602, p 306.

    CAS  Article  Google Scholar 

  54. 54.

    N. Saltmarsh, G.A. Kumar, M. Kailasnath, V. Shenoy, C. Santhosh, and D.K. Sardar, N. Saltmarsh, G.A. Kumar, M. Kailasnath, V. Shenoy, C. Santhosh, and D.K. Sardar, Opt. Mater., 2016, 53, p 24.

    CAS  Article  Google Scholar 

  55. 55.

    P.K. Baitha, and J. Manam, P.K. Baitha, and J. Manam, J. Rare Earths, 2015, 33, p 805.

    CAS  Article  Google Scholar 

  56. 56.

    X. Wang, X. Wang, W. Liu, C. Liu, and Z. Zhang, X. Wang, X. Wang, W. Liu, C. Liu, and Z. Zhang, Opt. Mater., 2014, 36, p 1506.

    CAS  Article  Google Scholar 

  57. 57.

    X. Wang, X. Wang, X. Zheng, and L. Zhang, X. Wang, X. Wang, X. Zheng, and L. Zhang, J. Alloys Compd., 2015, 632, p 269.

    CAS  Article  Google Scholar 

  58. 58.

    Z.W. Zhang, J.W. Hou, J. Li, X.Y. Wang, X.Y. Zhu, H.X. Qi, R.J. Lv, and D.J. Wang, Z.W. Zhang, J.W. Hou, J. Li, X.Y. Wang, X.Y. Zhu, H.X. Qi, R.J. Lv, and D.J. Wang, J. Alloys Compd., 2016, 682, p 557.

    CAS  Article  Google Scholar 

  59. 59.

    M. Xu, L. Wang, D. Jia, and F. Le, M. Xu, L. Wang, D. Jia, and F. Le, J. Lumin., 2015, 158, p 125.

    CAS  Article  Google Scholar 

  60. 60.

    X. Zhang, and M. Gong, X. Zhang, and M. Gong, Dalton Trans., 2014, 43, p 2465.

    CAS  Article  Google Scholar 

  61. 61.

    M. Takemoto, and T. Iseki, M. Takemoto, and T. Iseki, J. Phys. Chem. Solids, 2018, 114, p 88.

    CAS  Article  Google Scholar 

  62. 62.

    J.C. Bourcet, and F.K. Fong, J.C. Bourcet, and F.K. Fong, J. Chem. Phys., 1974, 60, p 34.

    CAS  Article  Google Scholar 

Download references

Acknowledgment

O.A. acknowledges the Moroccan National Center for Scientific and Technical Research for excellence scholarship number 1USMS2018. M.Y.M. acknowledges the Laboratory Holding Division of CNESTEN (Morocco) for the experimental support. NIMP authors acknowledge the financial support from the Romanian Ministry of Research and Innovation in the framework of Core Program 2019-2022 (Contract 21N/2019) and POC-G project MAT2IT (Contract 54/2016, SMIS code 105726, Intermediary Body-Romanian Ministry of Research and Innovation).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to L. Oufni or M. Secu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

AitMellal, O., Oufni, L., Messous, M.Y. et al. Structural and Optical Investigations of Ce3+/Mn2+-Doped LaPO4 Phosphors. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-020-08678-7

Download citation

Keywords

  • Phosphors
  • co-precipitation synthesis
  • x-ray diffraction
  • EPR
  • luminescence