Skip to main content
Log in

Structural and Optical Investigations of Ce3+/Mn2+-Doped LaPO4 Phosphors

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Lanthanum orthophosphate (LaPO4) and La0.95−xCe0.05MnxPO4 (x = 0.00, 0.03, 0.10) phosphors were synthesized by a simple and cost-efficient co-precipitation method and the formation of LaPO4 nanorods with a monoclinic P21/n crystal structure was observed. X-ray diffraction pattern analysis indicated a slight distortion of the LaPO4 crystalline structure and an increase of the lattice strain as a consequence of the Mn2+ and Ce3+ dopants incorporation in the host matrix. Scanning electron microscopy revealed that the microstructure of all powders consists of agglomerations of nanorods, which are around 17 ± 3 nm in diameter and length ranging from 100 nm to 300 nm. Electron paramagnetic resonance measurements have indicated the presence of Mn2+ in isolated species, but also as agglomerates. Ce3+ and Mn2+ doping of LaPO4 resulted also in a decrease of the band gap up to 4.70 eV compared to the un-doped sample. Because of an energy transfer effect from Ce3+ to Mn2+ ions, green emission of Mn2+ ions at around 550 nm was observed upon 275 nm excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.N. Achary, S. Bevara, and A.K. Tyagi, S.N. Achary, S. Bevara, and A.K. Tyagi, Coord. Chem. Rev., 2017, 340, p 266.

    Article  CAS  Google Scholar 

  2. X.Y. Huang, J.X. Wang, D.C. Yu, S. Ye, Q.Y. Zhang, and X.W. Sun, X.Y. Huang, J.X. Wang, D.C. Yu, S. Ye, Q.Y. Zhang, and X.W. Sun, J. Appl. Phys., 2011, 109, p 1.

    Google Scholar 

  3. J. Day, S. Senthilarasu, and T.K. Mallick, J. Day, S. Senthilarasu, and T.K. Mallick, Renew. Energy, 2019, 132, p 186.

    Article  Google Scholar 

  4. P. Indira, S.K. Rao, and K.V.R. Murthy, in AIP Conference Proceedings (2019), p. 030021.

  5. M. Leskelä, and L. Niinistö, M. Leskelä, and L. Niinistö, in Handbook on the Physics and Chemistry of Rare Earths. K.A. Gschneidner Jr., and L. Eyring Eds., Elsevier, Amsterdam, 1986, p 203

    Google Scholar 

  6. W.S. Song, H.N. Choi, Y.S. Kim, and H. Yang, W.S. Song, H.N. Choi, Y.S. Kim, and H. Yang, J. Mater. Chem., 2010, 20, p 6929.

    Article  CAS  Google Scholar 

  7. G.V.L. Reddy, L.R. Moorthy, T. Chengaiah, and B.C. Jamalaiah, G.V.L. Reddy, L.R. Moorthy, T. Chengaiah, and B.C. Jamalaiah, Ceram. Int., 2014, 40, p 3399.

    Article  CAS  Google Scholar 

  8. Y. Xia, Y. Huang, Q. Long, S. Liao, Y. Gao, J. Liang, and J. Cai, Y. Xia, Y. Huang, Q. Long, S. Liao, Y. Gao, J. Liang, and J. Cai, Ceram. Int., 2015, 41, p 5525.

    Article  CAS  Google Scholar 

  9. S. Van Loy, K. Binnemans, and T. Van Gerven, S. Van Loy, K. Binnemans, and T. Van Gerven, J. Clean. Prod., 2017, 156, p 226.

    Article  CAS  Google Scholar 

  10. C.K. Hong, H.S. Ko, E.M. Han, J.J. Yun, and K.H. Park, C.K. Hong, H.S. Ko, E.M. Han, J.J. Yun, and K.H. Park, Nanoscale Res. Lett., 2013, 8, p 1.

    Article  CAS  Google Scholar 

  11. S. Lee, K. Teshima, S. Mori, M. Endo, and S. Oishi, S. Lee, K. Teshima, S. Mori, M. Endo, and S. Oishi, Cryst. Growth Des., 2010, 10, p 1693.

    Article  CAS  Google Scholar 

  12. B.C. Rowan, L.R. Wilson, B.S. Richards, and IEEE, , B.C. Rowan, L.R. Wilson, and B.S. Richards, IEEE J. Sel. Top. Quantum Electron., 2008, 14, p 1312.

    Article  CAS  Google Scholar 

  13. T. Gavrilović, J. Periša, J. Papan, K. Vuković, K. Smits, D.J. Jovanović, and M.D. Dramićanin, T. Gavrilović, J. Periša, J. Papan, K. Vuković, K. Smits, D.J. Jovanović, and M.D. Dramićanin, J. Lumin., 2018, 195, p 420.

    Article  CAS  Google Scholar 

  14. M. Zhao, Z. Zhao, L. Yang, L. Dong, A. Xia, S. Chang, Y. Wei, and Z. Liu, M. Zhao, Z. Zhao, L. Yang, L. Dong, A. Xia, S. Chang, Y. Wei, and Z. Liu, J. Lumin., 2018, 194, p 297.

    Article  CAS  Google Scholar 

  15. H. Dong, Y. Liu, P. Yang, W. Wang, and J. Lin, H. Dong, Y. Liu, P. Yang, W. Wang, and J. Lin, Solid State Sci., 2010, 12, p 1652.

    Article  CAS  Google Scholar 

  16. R. Martínez-Martínez, A. Speghini, M. Bettinelli, C. Falcony, and U. Caldiño, R. Martínez-Martínez, A. Speghini, M. Bettinelli, C. Falcony, and U. Caldiño, J. Lumin., 2009, 129, p 1276.

    Article  CAS  Google Scholar 

  17. J. Fan, J. Gou, Y. Chen, B. Yu, and S.F. Liu, J. Fan, J. Gou, Y. Chen, B. Yu, and S.F. Liu, J. Alloys Compd., 2018, 731, p 796.

    Article  CAS  Google Scholar 

  18. D. Ghosh, K. Biswas, S. Balaji, and K. Annapurna, D. Ghosh, K. Biswas, S. Balaji, and K. Annapurna, J. Lumin., 2017, 183, p 143.

    Article  CAS  Google Scholar 

  19. S. Lucas, E. Champion, D. Bregiroux, D. Bernache-Assollant, and F. Audubert, S. Lucas, E. Champion, D. Bregiroux, D. Bernache-Assollant, and F. Audubert, J. Solid State Chem., 2004, 177, p 1302.

    Article  CAS  Google Scholar 

  20. W. Ruigang, P. Wei, C. Jian, F. Minghao, C. Zhenzhu, and L. Yongming, W. Ruigang, P. Wei, C. Jian, F. Minghao, C. Zhenzhu, and L. Yongming, Mater. Chem. Phys., 2003, 79, p 30.

    Article  Google Scholar 

  21. K. Byrappa, M.K. Devaraju, J.R. Paramesh, B. Basavalingu, and K. Soga, K. Byrappa, M.K. Devaraju, J.R. Paramesh, B. Basavalingu, and K. Soga, J. Mater. Sci., 2008, 43, p 2229.

    Article  CAS  Google Scholar 

  22. L. Yu, H. Song, S. Lu, Z. Liu, L. Yang, and X. Kong, L. Yu, H. Song, S. Lu, Z. Liu, L. Yang, and X. Kong, J. Phys. Chem. B, 2004, 108, p 16697.

    Article  CAS  Google Scholar 

  23. C. Wu, Y. Wang, and W. Jie, C. Wu, Y. Wang, and W. Jie, J. Alloys Compd., 2007, 436, p 383.

    Article  CAS  Google Scholar 

  24. M. Ferhi, K. Horchani-Naifer, and M. Férid, M. Ferhi, K. Horchani-Naifer, and M. Férid, J. Lumin., 2008, 128, p 1777.

    Article  CAS  Google Scholar 

  25. G. Rui, Q. Dong, and L. Wei, G. Rui, Q. Dong, and L. Wei, Trans. Nonferrous Metals Soc. China, 2010, 20, p 432.

    Article  CAS  Google Scholar 

  26. M. Ferhi, K. Horchani-Naifer, and M. Férid, M. Ferhi, K. Horchani-Naifer, and M. Férid, J. Rare Earths, 2009, 27, p 182.

    Article  Google Scholar 

  27. G.U. Caldino, and J. Condens, G.U. Caldino, and J. Condens, Matter Phys., 2003, 15, p 7127.

    Article  Google Scholar 

  28. Y. Ding, L.B. Liang, M. Li, D.F. He, L. Xu, P. Wang, and X.F. Yu, Y. Ding, L.B. Liang, M. Li, D.F. He, L. Xu, P. Wang, and X.F. Yu, Nanoscale Res. Lett., 2011, 6, p 119.

    Article  CAS  Google Scholar 

  29. D. Curie, Luminescence in Crystals, 1st edn. Methuen, London, 1963, p 142–174

    Google Scholar 

  30. P.I. Paulose, G. Jose, V. Thomas, N.V. Unnikrishnan, and M.K.R. Warrier, P.I. Paulose, G. Jose, V. Thomas, N.V. Unnikrishnan, and M.K.R. Warrier, J. Phys. Chem. Solids, 2003, 64, p 841.

    Article  CAS  Google Scholar 

  31. R. Martínez-Martínez, M. García-Hipólito, F. Ramos-Brito, J.L. Hernández-Pozos, U. Caldiño, and C. Falcony, R. Martínez-Martínez, M. García-Hipólito, F. Ramos-Brito, J.L. Hernández-Pozos, U. Caldiño, and C. Falcony, J. Phys. Condens. Matter, 2005, 17, p 3647.

    Article  CAS  Google Scholar 

  32. U. Caldino, J.L. Hernandez-Pozos, C. Flores, A. Speghini, and M. Bettinelli, U. Caldino, J.L. Hernandez-Pozos, C. Flores, A. Speghini, and M. Bettinelli, J. Phys. Condens. Matter, 2005, 17, p 7297.

    Article  CAS  Google Scholar 

  33. J.I. Langford, J.I. Langford, Prog. Cryst. Growth Charact., 1987, 14, p 185.

    Article  CAS  Google Scholar 

  34. V.D. Mote, Y. Purushotham, and B.N. Dole, V.D. Mote, Y. Purushotham, and B.N. Dole, J. Theor. Appl. Phys., 2012, 6, p 6.

    Article  Google Scholar 

  35. J. Kropiwnicka, J. Kropiwnicka, J. Therm. Anal., 1990, 36, p 979.

    Article  CAS  Google Scholar 

  36. M.A. Ahmadzadeh, S.F. Chini, and A. Sadeghi, M.A. Ahmadzadeh, S.F. Chini, and A. Sadeghi, Mater. Des., 2019, 181, p 108058.

    Article  CAS  Google Scholar 

  37. R. Kijkowska, E. Cholewka, and B. Duszak, R. Kijkowska, E. Cholewka, and B. Duszak, J. Mater. Sci., 2003, 38, p 223.

    Article  CAS  Google Scholar 

  38. R. Kijkowska, R. Kijkowska, J. Mater. Sci., 2003, 38, p 229.

    Article  CAS  Google Scholar 

  39. K. Rajesh, P. Shajesh, O. Seidel, P. Mukundan, and K.G. Warrier, K. Rajesh, P. Shajesh, O. Seidel, P. Mukundan, and K.G. Warrier, Adv. Funct. Mater., 2007, 17, p 1682.

    Article  CAS  Google Scholar 

  40. R. Komban, K. Koempe, and M. Haase, R. Komban, K. Koempe, and M. Haase, Cryst. Growth Des., 2011, 11, p 1033.

    Article  CAS  Google Scholar 

  41. P. Scardi, and M. Leoni, P. Scardi, and M. Leoni, Acta Crystallogr. A, 2001, 57, p 604.

    Article  CAS  Google Scholar 

  42. E.J. Mittemeijer, U. Welzel, and Z. Kristallogr, E.J. Mittemeijer, U. Welzel, and Z. Kristallogr, Cryst. Mater., 2008, 223, p 552.

    CAS  Google Scholar 

  43. M. Puchalska, and E. Zych, M. Puchalska, and E. Zych, Opt. Mater., 2017, 74, p 2.

    Article  CAS  Google Scholar 

  44. J.M. Dance, J.J. Videau, and J. Portier, J.M. Dance, J.J. Videau, and J. Portier, J. Non-Cryst. Solids, 1986, 86, p 88.

    Article  CAS  Google Scholar 

  45. M. Kitaura, S. Watanabe, K. Ogasawara, A. Ohnishi, and M. Sasaki, M. Kitaura, S. Watanabe, K. Ogasawara, A. Ohnishi, and M. Sasaki, in The DV-Xα Molecular-Orbital Calculation Method. T. Ishii, H. Wakita, K. Ogasawara, and Y.S. Kim Eds., Springer, Heidelberg, 2015, p 217

    Google Scholar 

  46. M. Kitaura, Y. Nakajima, M. Kaneyoshi, and H. Nakagawa, M. Kitaura, Y. Nakajima, M. Kaneyoshi, and H. Nakagawa, Jpn. J. Appl. Phys., 2007, 46, p 6691.

    Article  CAS  Google Scholar 

  47. T.H. Yeom, Y.H. Lee, T.S. Hahn, M.H. Oh, and S.H. Choh, T.H. Yeom, Y.H. Lee, T.S. Hahn, M.H. Oh, and S.H. Choh, J. Appl. Phys., 1996, 79, p 1004.

    Article  CAS  Google Scholar 

  48. G. Li, L. Li, M. Li, Y. Song, H. Zou, L. Zou, X. Xu, and S. Gan, G. Li, L. Li, M. Li, Y. Song, H. Zou, L. Zou, X. Xu, and S. Gan, Mater. Chem. Phys., 2012, 133, p 263.

    Article  CAS  Google Scholar 

  49. G. Phaomei, W.R. Singh, and R.S. Ningthoujam, G. Phaomei, W.R. Singh, and R.S. Ningthoujam, J. Lumin., 2011, 131, p 1164.

    Article  CAS  Google Scholar 

  50. D.F. Mullica, W.O. Milligan, D.A. Grossie, G.W. Beall, and L.A. Boatner, D.F. Mullica, W.O. Milligan, D.A. Grossie, G.W. Beall, and L.A. Boatner, Inorg. Chim. Acta, 1984, 95, p 231.

    Article  CAS  Google Scholar 

  51. S.K. Gupta, P.S. Ghosh, M. Sahu, K. Bhattacharyya, R. Tewari, and V. Natarajan, S.K. Gupta, P.S. Ghosh, M. Sahu, K. Bhattacharyya, R. Tewari, and V. Natarajan, RSC Adv., 2015, 5, p 58832.

    Article  CAS  Google Scholar 

  52. R. Köferstein, L. Jäger, and S.G. Ebbinghaus, R. Köferstein, L. Jäger, and S.G. Ebbinghaus, Solid State Ion., 2013, 249, p 1.

    Article  CAS  Google Scholar 

  53. D.T.M. Huong, L.T. Trang, L.V. Vu, and N.N. Long, D.T.M. Huong, L.T. Trang, L.V. Vu, and N.N. Long, J. Alloys Compd., 2014, 602, p 306.

    Article  CAS  Google Scholar 

  54. N. Saltmarsh, G.A. Kumar, M. Kailasnath, V. Shenoy, C. Santhosh, and D.K. Sardar, N. Saltmarsh, G.A. Kumar, M. Kailasnath, V. Shenoy, C. Santhosh, and D.K. Sardar, Opt. Mater., 2016, 53, p 24.

    Article  CAS  Google Scholar 

  55. P.K. Baitha, and J. Manam, P.K. Baitha, and J. Manam, J. Rare Earths, 2015, 33, p 805.

    Article  CAS  Google Scholar 

  56. X. Wang, X. Wang, W. Liu, C. Liu, and Z. Zhang, X. Wang, X. Wang, W. Liu, C. Liu, and Z. Zhang, Opt. Mater., 2014, 36, p 1506.

    Article  CAS  Google Scholar 

  57. X. Wang, X. Wang, X. Zheng, and L. Zhang, X. Wang, X. Wang, X. Zheng, and L. Zhang, J. Alloys Compd., 2015, 632, p 269.

    Article  CAS  Google Scholar 

  58. Z.W. Zhang, J.W. Hou, J. Li, X.Y. Wang, X.Y. Zhu, H.X. Qi, R.J. Lv, and D.J. Wang, Z.W. Zhang, J.W. Hou, J. Li, X.Y. Wang, X.Y. Zhu, H.X. Qi, R.J. Lv, and D.J. Wang, J. Alloys Compd., 2016, 682, p 557.

    Article  CAS  Google Scholar 

  59. M. Xu, L. Wang, D. Jia, and F. Le, M. Xu, L. Wang, D. Jia, and F. Le, J. Lumin., 2015, 158, p 125.

    Article  CAS  Google Scholar 

  60. X. Zhang, and M. Gong, X. Zhang, and M. Gong, Dalton Trans., 2014, 43, p 2465.

    Article  CAS  Google Scholar 

  61. M. Takemoto, and T. Iseki, M. Takemoto, and T. Iseki, J. Phys. Chem. Solids, 2018, 114, p 88.

    Article  CAS  Google Scholar 

  62. J.C. Bourcet, and F.K. Fong, J.C. Bourcet, and F.K. Fong, J. Chem. Phys., 1974, 60, p 34.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

O.A. acknowledges the Moroccan National Center for Scientific and Technical Research for excellence scholarship number 1USMS2018. M.Y.M. acknowledges the Laboratory Holding Division of CNESTEN (Morocco) for the experimental support. NIMP authors acknowledge the financial support from the Romanian Ministry of Research and Innovation in the framework of Core Program 2019-2022 (Contract 21N/2019) and POC-G project MAT2IT (Contract 54/2016, SMIS code 105726, Intermediary Body-Romanian Ministry of Research and Innovation).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Oufni or M. Secu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AitMellal, O., Oufni, L., Messous, M.Y. et al. Structural and Optical Investigations of Ce3+/Mn2+-Doped LaPO4 Phosphors. J. Electron. Mater. 50, 2137–2147 (2021). https://doi.org/10.1007/s11664-020-08678-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08678-7

Keywords

Navigation