Abstract
BiFeO3 is a ferroelectric and antiferromagnetic material at room temperature. In contrast to the weak ferromagnetism anticipated below TN = 640 K, it exhibits no macroscopic moment due to a cycloidal spin ordering. This study attempts to perturb the cycloidal spin ordering and improve the multiferroic properties by substitutions of Al and Sc at Fe site. The compounds BiFe1−xAlxO3 (0 ≤ x ≤ 0.3) and BiFe1−xScxO3 (0 ≤ x ≤ 0.2), synthesized at high pressures and temperatures, crystallize with perovskite structure in polar space group R3c. With increasing Al/Sc concentration, the compounds undergo marked changes in magnetic properties. While Al-substituted compounds were lossy and exhibited a Maxwell–Wagner effect, the Sc-substituted compounds exhibited ferroelectricity at room temperature.
This is a preview of subscription content, access via your institution.









References
- 1.
N.A. Spaldin and R. Ramesh, Nat. Mater. 18, 203 (2019).
- 2.
A. Urru, F. Ricci, A. Filippetti, J. Íñiguez, and V. Fiorentini, Nat. Commun. 11, 4922 (2020).
- 3.
E. Parsonnet, Y.-L. Huang, T. Gosavi, A. Qualls, D. Nikonov, C.-C. Lin, I. Young, J. Bokor, L.W. Martin, and R. Ramesh, Phys. Rev. Lett. 125, 067601 (2020).
- 4.
S. Chakraborty, S.K. Mandal, and B. Saha, Ceram. Int. 45, 14851 (2019).
- 5.
S. Chakraborty, S.K. Mandal, and B. Saha, J. Appl. Phys. 125, 204102 (2019).
- 6.
H. Yan, Z. Feng, P. Qin, X. Zhou, H. Guo, X. Wang, H. Chen, X. Zhang, H. Wu, C. Jiang, and Z. Liu, Adv. Mater. 32, 1905603 (2020).
- 7.
C.M. Zhu, G.B. Yu, L.G. Wang, M.W. Yao, F.C. Liu, and W.J. Kong, J. Magn. Magn. Mater. 506, 166803 (2020).
- 8.
W. Wang, J. Chen, L. Li, Q. Li, M. Zeng, Z. Hou, C. Lu, X. Gao, X. Lu, Q. Li, and J.-M. Liu, Appl. Phys. Lett. 116, 152901 (2020).
- 9.
M.D. Davydova, K.A. Zvezdin, A.A. Mukhin and A.K. Zvezdin, Phys. Sci. Rev. 5, 20190070 (2020).
- 10.
J.-M. Hu and C.-W. Nan, APL Mater. 7, 080905 (2019).
- 11.
B. Prasad, Y.-L. Huang, R.V. Chopdekar, Z. Chen, J. Steffes, S. Das, Q. Li, M. Yang, C.-C. Lin, T. Gosavi, D.E. Nikonov, Z.Q. Qiu, L.W. Martin, B.D. Huey, I. Young, J. Íñiguez, S. Manipatruni, and R. Ramesh, Adv. Mater. 32, 2001943 (2020).
- 12.
P.N. Ravi Shankar, S. Mishra, and S. Athinarayanan, APL Mater. 8, 040906 (2020).
- 13.
W. Eerenstein, N.D. Mathur, and J.F. Scott, Nature 442, 759 (2006).
- 14.
R. Seshadri and N.A. Hill, Chem. Mater. 13, 2892 (2001).
- 15.
J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
- 16.
G.A. Smolenskii and I.E. Chupis, Sov. Phys. Usp. 25, 475 (1982).
- 17.
A.A. Belik, S. Iikubo, K. Kodama, N. Igawa, S.I. Shamoto, M. Maie, T. Nagai, Y. Matsui, S.Y. Stefanovich, B.I. Lazoryak, and E. Takayama-Muromachi, J. Am. Chem. Soc. 128, 706 (2005).
- 18.
A.A. Belik and E. Takayama-Muromachi, Inorg. Chem. 45, 10224 (2006).
- 19.
P. Mandal, A. Iyo, Y. Tanaka, A. Sundaresan, and C.N.R. Rao, J. Mater. Chem. 20, 1646 (2010).
- 20.
C. De, Á.M. Arévalo-López, F. Orlandi, P. Manuel, J.P. Attfield, and A. Sundaresan, Angew. Chem. Int. Ed. 57, 16099 (2018).
- 21.
S.T. Zhang, M.H. Lu, D. Wu, Y.F. Chen, and N.B. Ming, Appl. Phys. Lett. 87, 262907 (2005).
- 22.
I. Sosnowska, T.P. Neumaier, and E. Steichele, J. Phys. C: Solid State Phys. 15, 4835 (1982).
- 23.
Y.F. Popov, A.K. Zvezdin, G.P. Vorobev, A.M. Kadomtseva, V.A. Murashev, and D.N. Rakov, JETP Lett. 57, 69 (1993).
- 24.
V.R. Palkar, D.C. Kundaliya, S.K. Malik, and S. Bhattacharya, Phys. Rev. B 69, 212102 (2004).
- 25.
B. Ruette, S. Zvyagin, A.P. Pyatakov, A. Bush, J.F. Li, V.I. Belotelov, A.K. Zvezdin, and D. Viehland, Phys. Rev. B 69, 064114 (2004).
- 26.
S.-T. Zhang, Y. Zhang, M.-H. Lu, C.-L. Du, Y.-F. Chen, Z.-G. Liu, Y.-Y. Zhu, N.-B. Ming, and X.Q. Pan, Appl. Phys. Lett. 88, 162901 (2006).
- 27.
V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, L. Jian, A.L. Kholkin, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, and M. Maglione, J. Appl. Phys. 103, 024105 (2008).
- 28.
J. Wei, R. Haumont, R. Jarrier, P. Berhtet, and B. Dkhil, Appl. Phys. Lett. 96, 102509 (2010).
- 29.
Y.F. Cui, Y.G. Zhao, L.B. Luo, J.J. Yang, H. Chang, M.H. Zhu, D. Xie, and T.L. Ren, Appl. Phys. Lett. 97, 222904 (2010).
- 30.
R.D. Shannon, Acta Cryst. A 32, 751 (1976).
- 31.
J. Zylberberg, A.A. Belik, E. Takayama-Muromachi, and Z.-G. Ye, Chem. Mater. 19, 6385 (2007).
- 32.
J. Rodríguez-Carvajal, In Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, p. 127, Toulouse, France, (1990)
- 33.
M.K. Singh, R.S. Katiyar, and J.F. Scott, J. Phys. Cond. Matter 20, 252203 (2008).
- 34.
T. Yamaguchi, J. Phys. Chem. Solids 35, 479 (1974).
- 35.
R.L. White, J. Appl. Phys. 40, 1061 (1969).
- 36.
P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, and A. Loidl, Phys. Rev. B 70, 172102 (2004).
- 37.
D.C. Sinclair, T.B. Adams, F.D. Morrison, and A.R. West, Appl. Phys. Lett. 80, 2153 (2002).
- 38.
M. Li, A. Feteira, and D.C. Sinclair, J. Appl. Phys. 105, 114109 (2009).
- 39.
M. Li, Z. Shen, M. Nygren, A. Feteira, D.C. Sinclair, and A.R. West, J. Appl. Phys. 106, 104106 (2009).
- 40.
M. Valant, A.-K. Axelsson, and N. Alford, Chem. Mater. 19, 5431 (2007).
- 41.
Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, and Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004).
- 42.
W.N. Su, D.H. Wang, Q.Q. Cao, Z.D. Han, J. Yin, J.R. Zhang, and Y.W. Du, Appl. Phys. Lett. 91, 092905 (2007).
Acknowledgment
A.S. would like to acknowledge financial support from the Science and Engineering Board (SERB Sanction No. CRG/2018/000520), Department of Science and Technology (DST), Government of India.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflicts of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mandal, P., Sundaresan, A. Effect of Nonmagnetic Ion Substitution on Multiferroic Properties of BiFeO3. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-020-08675-w
Received:
Accepted:
Published:
Keywords
- Perovskite
- high-pressure synthesis
- multiferroics
- Maxwell–Wagner relaxation
- ferroelectric