Effect of Nonmagnetic Ion Substitution on Multiferroic Properties of BiFeO3


BiFeO3 is a ferroelectric and antiferromagnetic material at room temperature. In contrast to the weak ferromagnetism anticipated below TN = 640 K, it exhibits no macroscopic moment due to a cycloidal spin ordering. This study attempts to perturb the cycloidal spin ordering and improve the multiferroic properties by substitutions of Al and Sc at Fe site. The compounds BiFe1−xAlxO3 (0 ≤ x ≤ 0.3) and BiFe1−xScxO3 (0 ≤ x ≤ 0.2), synthesized at high pressures and temperatures, crystallize with perovskite structure in polar space group R3c. With increasing Al/Sc concentration, the compounds undergo marked changes in magnetic properties. While Al-substituted compounds were lossy and exhibited a Maxwell–Wagner effect, the Sc-substituted compounds exhibited ferroelectricity at room temperature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    N.A. Spaldin and R. Ramesh, Nat. Mater. 18, 203 (2019).

    CAS  Article  Google Scholar 

  2. 2.

    A. Urru, F. Ricci, A. Filippetti, J. Íñiguez, and V. Fiorentini, Nat. Commun. 11, 4922 (2020).

    CAS  Article  Google Scholar 

  3. 3.

    E. Parsonnet, Y.-L. Huang, T. Gosavi, A. Qualls, D. Nikonov, C.-C. Lin, I. Young, J. Bokor, L.W. Martin, and R. Ramesh, Phys. Rev. Lett. 125, 067601 (2020).

    CAS  Article  Google Scholar 

  4. 4.

    S. Chakraborty, S.K. Mandal, and B. Saha, Ceram. Int. 45, 14851 (2019).

    CAS  Article  Google Scholar 

  5. 5.

    S. Chakraborty, S.K. Mandal, and B. Saha, J. Appl. Phys. 125, 204102 (2019).

    Article  CAS  Google Scholar 

  6. 6.

    H. Yan, Z. Feng, P. Qin, X. Zhou, H. Guo, X. Wang, H. Chen, X. Zhang, H. Wu, C. Jiang, and Z. Liu, Adv. Mater. 32, 1905603 (2020).

    CAS  Article  Google Scholar 

  7. 7.

    C.M. Zhu, G.B. Yu, L.G. Wang, M.W. Yao, F.C. Liu, and W.J. Kong, J. Magn. Magn. Mater. 506, 166803 (2020).

    CAS  Article  Google Scholar 

  8. 8.

    W. Wang, J. Chen, L. Li, Q. Li, M. Zeng, Z. Hou, C. Lu, X. Gao, X. Lu, Q. Li, and J.-M. Liu, Appl. Phys. Lett. 116, 152901 (2020).

    CAS  Article  Google Scholar 

  9. 9.

    M.D. Davydova, K.A. Zvezdin, A.A. Mukhin and A.K. Zvezdin, Phys. Sci. Rev. 5, 20190070 (2020).

    Google Scholar 

  10. 10.

    J.-M. Hu and C.-W. Nan, APL Mater. 7, 080905 (2019).

    Article  CAS  Google Scholar 

  11. 11.

    B. Prasad, Y.-L. Huang, R.V. Chopdekar, Z. Chen, J. Steffes, S. Das, Q. Li, M. Yang, C.-C. Lin, T. Gosavi, D.E. Nikonov, Z.Q. Qiu, L.W. Martin, B.D. Huey, I. Young, J. Íñiguez, S. Manipatruni, and R. Ramesh, Adv. Mater. 32, 2001943 (2020).

    CAS  Article  Google Scholar 

  12. 12.

    P.N. Ravi Shankar, S. Mishra, and S. Athinarayanan, APL Mater. 8, 040906 (2020).

    CAS  Article  Google Scholar 

  13. 13.

    W. Eerenstein, N.D. Mathur, and J.F. Scott, Nature 442, 759 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    R. Seshadri and N.A. Hill, Chem. Mater. 13, 2892 (2001).

    CAS  Article  Google Scholar 

  15. 15.

    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    G.A. Smolenskii and I.E. Chupis, Sov. Phys. Usp. 25, 475 (1982).

    Article  Google Scholar 

  17. 17.

    A.A. Belik, S. Iikubo, K. Kodama, N. Igawa, S.I. Shamoto, M. Maie, T. Nagai, Y. Matsui, S.Y. Stefanovich, B.I. Lazoryak, and E. Takayama-Muromachi, J. Am. Chem. Soc. 128, 706 (2005).

    Article  CAS  Google Scholar 

  18. 18.

    A.A. Belik and E. Takayama-Muromachi, Inorg. Chem. 45, 10224 (2006).

    CAS  Article  Google Scholar 

  19. 19.

    P. Mandal, A. Iyo, Y. Tanaka, A. Sundaresan, and C.N.R. Rao, J. Mater. Chem. 20, 1646 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    C. De, Á.M. Arévalo-López, F. Orlandi, P. Manuel, J.P. Attfield, and A. Sundaresan, Angew. Chem. Int. Ed. 57, 16099 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    S.T. Zhang, M.H. Lu, D. Wu, Y.F. Chen, and N.B. Ming, Appl. Phys. Lett. 87, 262907 (2005).

    Article  CAS  Google Scholar 

  22. 22.

    I. Sosnowska, T.P. Neumaier, and E. Steichele, J. Phys. C: Solid State Phys. 15, 4835 (1982).

    CAS  Article  Google Scholar 

  23. 23.

    Y.F. Popov, A.K. Zvezdin, G.P. Vorobev, A.M. Kadomtseva, V.A. Murashev, and D.N. Rakov, JETP Lett. 57, 69 (1993).

    Google Scholar 

  24. 24.

    V.R. Palkar, D.C. Kundaliya, S.K. Malik, and S. Bhattacharya, Phys. Rev. B 69, 212102 (2004).

    Article  CAS  Google Scholar 

  25. 25.

    B. Ruette, S. Zvyagin, A.P. Pyatakov, A. Bush, J.F. Li, V.I. Belotelov, A.K. Zvezdin, and D. Viehland, Phys. Rev. B 69, 064114 (2004).

    Article  CAS  Google Scholar 

  26. 26.

    S.-T. Zhang, Y. Zhang, M.-H. Lu, C.-L. Du, Y.-F. Chen, Z.-G. Liu, Y.-Y. Zhu, N.-B. Ming, and X.Q. Pan, Appl. Phys. Lett. 88, 162901 (2006).

    Article  CAS  Google Scholar 

  27. 27.

    V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, L. Jian, A.L. Kholkin, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, and M. Maglione, J. Appl. Phys. 103, 024105 (2008).

    Article  CAS  Google Scholar 

  28. 28.

    J. Wei, R. Haumont, R. Jarrier, P. Berhtet, and B. Dkhil, Appl. Phys. Lett. 96, 102509 (2010).

    Article  CAS  Google Scholar 

  29. 29.

    Y.F. Cui, Y.G. Zhao, L.B. Luo, J.J. Yang, H. Chang, M.H. Zhu, D. Xie, and T.L. Ren, Appl. Phys. Lett. 97, 222904 (2010).

    Article  CAS  Google Scholar 

  30. 30.

    R.D. Shannon, Acta Cryst. A 32, 751 (1976).

    Article  Google Scholar 

  31. 31.

    J. Zylberberg, A.A. Belik, E. Takayama-Muromachi, and Z.-G. Ye, Chem. Mater. 19, 6385 (2007).

    CAS  Article  Google Scholar 

  32. 32.

    J. Rodríguez-Carvajal, In Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, p. 127, Toulouse, France, (1990)

  33. 33.

    M.K. Singh, R.S. Katiyar, and J.F. Scott, J. Phys. Cond. Matter 20, 252203 (2008).

    Article  CAS  Google Scholar 

  34. 34.

    T. Yamaguchi, J. Phys. Chem. Solids 35, 479 (1974).

    CAS  Article  Google Scholar 

  35. 35.

    R.L. White, J. Appl. Phys. 40, 1061 (1969).

    CAS  Article  Google Scholar 

  36. 36.

    P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, and A. Loidl, Phys. Rev. B 70, 172102 (2004).

    Article  CAS  Google Scholar 

  37. 37.

    D.C. Sinclair, T.B. Adams, F.D. Morrison, and A.R. West, Appl. Phys. Lett. 80, 2153 (2002).

    CAS  Article  Google Scholar 

  38. 38.

    M. Li, A. Feteira, and D.C. Sinclair, J. Appl. Phys. 105, 114109 (2009).

    Article  CAS  Google Scholar 

  39. 39.

    M. Li, Z. Shen, M. Nygren, A. Feteira, D.C. Sinclair, and A.R. West, J. Appl. Phys. 106, 104106 (2009).

    Article  CAS  Google Scholar 

  40. 40.

    M. Valant, A.-K. Axelsson, and N. Alford, Chem. Mater. 19, 5431 (2007).

    CAS  Article  Google Scholar 

  41. 41.

    Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, and Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004).

    CAS  Article  Google Scholar 

  42. 42.

    W.N. Su, D.H. Wang, Q.Q. Cao, Z.D. Han, J. Yin, J.R. Zhang, and Y.W. Du, Appl. Phys. Lett. 91, 092905 (2007).

    Article  CAS  Google Scholar 

Download references


A.S. would like to acknowledge financial support from the Science and Engineering Board (SERB Sanction No. CRG/2018/000520), Department of Science and Technology (DST), Government of India.

Author information



Corresponding author

Correspondence to A. Sundaresan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mandal, P., Sundaresan, A. Effect of Nonmagnetic Ion Substitution on Multiferroic Properties of BiFeO3. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-020-08675-w

Download citation


  • Perovskite
  • high-pressure synthesis
  • multiferroics
  • Maxwell–Wagner relaxation
  • ferroelectric