Effect of Magnesium Doping to Reduce the Charge Reservoir Layer in Cu0.5Tl0.5(Ba2−xMgx)Ca2Cu3Oy (x = 0, 0.15, 0.25, 0.35) Superconductors


The charge reservoir layer plays a crucial role in the charge transfer mechanism in high-temperature superconductors. The effect of reducing the thickness of the Cu0.5Tl0.5Ba2O4−δ charge reservoir by replacing Ba with Mg atom in Cu0.5Tl0.5-1223 crystal has been studied. Cu0.5Tl0.5(Ba2−xMgx)Ca2Cu3Oy (x = 0, 0.15, 0.25, 0.35) superconductor samples were synthesized by a two-step solid-state reaction method. The as-grown samples showed orthorhombic crystal structure in which the c-axis lattice parameter and unit cell volume were systematically suppressed with increasing incorporation of Mg into the final compound, thereby resulting in suppression of the charge reservoir. The room-temperature resistivity increased with the Mg doping content, while the Tc and Tc-onset values decreased according to both resistivity and alternating-current (AC) susceptibility measurements. Fourier-transform infrared (FTIR) absorption measurements revealed three phonon modes related to vibrations of Tl–OA–Cu(2), Cu(1)–OA–Cu(2), and CuO2 planar oxygen atoms at around 420 cm−1, 480 cm−1 to 540 cm−1, and 580 cm−1, respectively. The apical oxygen mode of Tl–OA–Cu(2) type was hardened whereas the position of the latter two modes remained unchanged with increasing Mg doping in the final compound. Excess conductivity analyses showed a significant decrease in the onset temperature for Cooper pair formation (T*2D−SW). The coherence along the c-axis ξc(0), the interlayer coupling J, and the Fermi velocity vF of superconducting carriers increased with increasing Mg doping at Ba sites. These result suggest that the transfer mechanism of charge carriers from the Cu0.5Tl0.5Ba2O4−δ charge reservoir layer to the conducting CuO2 planes became more efficient, as evidenced by the increased coherence length ξc(0) and Fermi velocity vF of the carriers. However, the suppression of parameters such as Bc0(T), Bc1(T), Jc0(0), and τφ indicates that the density of pinning centers was suppressed with increasing Mg doping in the final compound.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    N.A. Khan and A.A. Khurram, Appl. Phys. Lett. 86, 1 (2005).

    Article  Google Scholar 

  2. 2.

    N.A. Khan and G. Husnain, Phys. C Supercond. Appl. 436, 51 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    R.F. Klie, J.P. Buban, M. Varela, A. Franceschetti, C. Jooss, Y. Zhu, N.D. Browning, S.T. Pantelides, and S.J. Pennycook, Nature 435, 475 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    S.D. Park, H.J. Kim, B.J. Park, Y.H. Han, B.H. Jun, J.S. Lee, C.J. Kim. Phys. C Supercond. Appl. 471 (21-22), 880 (2011).

  5. 5.

    K. Tanaka, A. Iyo, N. Terada, K. Tokiwa, S. Miyashita, Y. Tanaka, T. Tsukamoto, S.K. Agarwal, T. Watanabe, H. Ihara. Phys. Rev. B: Condens. Matter Mater. Phys. 63 (6), 1 (2001).

  6. 6.

    K. Tokiwa, H. Aota, C. Kunugi, K. Tanaka, Y. Tanaka, A. Iyo, H. Ihara, and T. Watanabe, Phys. B 288, 1077 (2000).

    Article  Google Scholar 

  7. 7.

    A.I. Abou-Aly, R. Awad, I.H. Ibrahim, W. Abdeen. Solid State Commun. 149 (7-8), 281 (2009).

  8. 8.

    P.C. Gibbons, K.F. Kelton, Z.-Y. Li, L. Mantese, L. Sobotka. MRS Proc. 99 (1987).

  9. 9.

    C. Park and R.L. Snyder, Struct. High-Temperat. Cuprate Superconduct. (1995). https://doi.org/10.1111/j.1151-2916.1995.tb07953.x.

    Article  Google Scholar 

  10. 10.

    M.U. Muzaar, G. Hussain, N.A. Khan, U.U. Rehman, S.A. Ali, and H.M. Rehan Afzal. J. Supercond. Nov. Magn. 30(8), 20532058 (2017).

  11. 11.

    Lai, C.C., Ho, P.C., Hung, C.Y., Ku, H.C. Chinese J. Phys. 29(1) (1991).

  12. 12.

    Asad Raza, Syed Hamza Safeer, and N.A. Khan, J. Supercond. Nov. Magn. 30, 1153 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    A.K. Ghosh, S.K. Bandyopadhyay, A.N. Basu, and P. Sen, Condens. Matter Phys. 264, 255 (1996).

    CAS  Google Scholar 

  14. 14.

    S.S. Farhat and R. Abd-Shukor, Int. J. Electrochem. Sci. 11, 5973 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    M. Mumtaz, L. Ali, M. Waqee-ur Rehman, K. Nadeem, G. Hussain, G. Abbas, B. Majeed. J. Supercond. Nov. Magn. 30 (10), 2741 (2017).

  16. 16.

    N.A. Khan, S.H. Safeer, M.Rahim, M.N. Khan, and N. Hassan. J. Supercond. Nov. Magn., 30 (2017) 1493.

  17. 17.

    M. Kaur, R. Srinivasan, G.K. Mehta, D. Kanjilal, R. Pinto, S.B. Ogale, S. Mohan, and V. Ganesan, Phys. C Supercond. Appl. 443, 61–68 (2006).

    CAS  Article  Google Scholar 

  18. 18.

    W.E. Lawrence and S. Doniach, Proceedings of the Twelfth International Conference on Low Temperature Physics, edited by Eizo Kanda (Keigaku, Tokyo) p. 361, 1971.

  19. 19.

    H. Ibach, and H. Luth, Solid State Physics: An Introduction to Theory and Experiment, p. 222, 1st edn, Springer, Berlin, (1991).

  20. 20.

    F. Ben Azzouz, M. Zouaoui, M. Annabi, and M. Ben Salem. Phys. Stat. Sol. (c) 3, No, 9, 3048 (2006).

  21. 21.

    M.P. Rojas Sarmiento, M.A. Uribe Laverde, E. Vera Lopez, D.A. Landınez Tellez, and J. Roa-Rojas. Phys. B Condens. Matter. 398 (2) (2007) 360.

  22. 22.

    A.I. Abou Aly, I.H. Ibrahim, R. Awad, A. El-Harizy, and A. Khalaf. J. Supercond. Nov. Magn. 260 23 (7) (2010) 1325.

  23. 23.

    N.A. Khan, Syed Hamza Safeer, Asad Raza, and M. Nasir Khan, J. Supercond. Nov. Magn. 32, 1163 (2019).

    CAS  Article  Google Scholar 

  24. 24.

    N.A. Khan, S.H. Safeer, M.N. Khan, M. Rahim, and Najmul Hassan. J. Mater. Sci. Mater. Electron. 29, 2209 (2017).

  25. 25.

    M.U. Muzaffar, S.H. Safeer, N.A. Khan, and A.A Khurram. Mater. Chem. Phys. Mater. Chem. Phys. 181 (2016).

  26. 26.

    M.U. Muzaffar, S.H. Safeer, N.A. Khan, A.A. Khurram, T. Subhani, and Rabia Nazir. J. Supercond. Nov. Magn. 31(6), 1669 (2018)

  27. 27.

    M.D. Pleacher. 1315. Med. Sci. Sport. Exerc. 41(13), 60 (2009).

  28. 28.

    H.H. Wen, G. Mu, L. Fang, H. Yang, X. Zhu, Superconductivity at 25 K in hole-doped (La1−xSrx)OFeAs, Epl 82 (1) (2008). arXiv:0803.3021

Download references

Author information



Corresponding author

Correspondence to Syed Hamza Safeer.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical and Financial Statement

No funding was received for this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naseem, K., Khan, N.A. & Safeer, S.H. Effect of Magnesium Doping to Reduce the Charge Reservoir Layer in Cu0.5Tl0.5(Ba2−xMgx)Ca2Cu3Oy (x = 0, 0.15, 0.25, 0.35) Superconductors. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-020-08669-8

Download citation


  • Cu0.5Tl0.5(Ba2−xMgx)Ca2Cu3Oy (x = 0, 0.15, 0.25, 0.35)
  • excess conductivity analysis
  • charge reservoir layer
  • coherence length
  • phonon modes
  • Aslamazov–Larkin model