Effect of Trace Addition of In on Sn-Cu Solder Joint Microstructure Under Electromigration

Abstract

Recently In has been considered as an additional alloying element in Sn-rich solders primarily due to its abilities to decrease the solder melting temperature and to modify mechanical properties and microstructure. While In is an attractive candidate for addition to solder, its effect on solder microstructure is not well understood. In order to study the effect of minor In additions on Sn-rich solder alloys, solder joints were prepared using Sn-0.7 wt.% Cu and Sn-0.7 wt.% Cu- < 1 wt.% In alloys. Thermal aging and electromigration testing were done, followed by post-mortem microstructure characterization including composition, morphology, and grain structure. The addition of In did not appear to affect the microstructure under thermal aging conditions, but slowed interfacial intermetallic growth under electromigration, particularly of the compound Cu6Sn5. Transmission electron microscope analysis revealed the formation of Cu7In3 IMC nanoparticles, which were semicoherent with the surrounding Sn matrix.

References

  1. 1.

    R.M. Shalaby, J. Mater. Sci. Mater. Electron. 26, 6625 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    K. Kanlayasiri, M. Mongkolwongrojn, and T. Ariga, J. Alloys Compd. 485, 225 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    S. Sommadossi and A.F. Guillermet, Intermetallics 15, 912 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    S. Tian, S. Li, J. Zhou, and F. Xue, J. Alloys Compd. 742, 835 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    L.F. Li, Y.K. Cheng, G.L. Xu, E.Z. Wang, Z.H. Zhang, and H. Wang, Mater. Des. 64, 15 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    D.L. Wang, Y. Yuan, and L. Luo, IEEE Trans. Compon. Packag. Manuf. Technol. 2, 1275 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    S. Tian, S. Li, J. Zhou, F. Xue, R. Cao, and F. Wang, J. Mater. Sci. Mater. Electron. 28, 16120 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    P.T. Vianco, J.A. Rejent, A.F. Fossum, and M.K. Neilsen, J. Mater. Sci. Mater. Electron. 18, 93 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    K. Kanlayasiri and K. Sukpimai, J. Alloys Compd. 668, 169 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    J.P. Daghfal and J.K. Shang, J. Electron. Mater. 36, 1372 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    Y. Li, A.B.Y. Lim, K. Luo, Z. Chen, F. Wu, and Y.C. Chan, J. Alloys Compd. 673, 372 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    K. Lee, K.-S. Kim, and K. Suganuma, J. Mater. Res. 26, 467 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    S.D. Mahapatra, B.S. Majumdar, I. Dutta, and S. Bhassyvasantha, J. Electron. Mater. 46, 4062 (2017).

    Article  Google Scholar 

  14. 14.

    C.R. Kao, Mater. Sci. Eng. A 238, 196 (1997).

    Article  Google Scholar 

  15. 15.

    X.J. Liu, H.S. Liu, I. Ohnuma, R. Kainuma, K. Ishida, S. Itabashi, K. Kameda, and K. Yamaguchi, J. Electron. Mater. 30, 1093 (2001).

    CAS  Article  Google Scholar 

  16. 16.

    Z. Bahari, E. Dichi, B. Legendre, and J. Dugue, Thermochim. Acta 401, 313 (2003).

    Article  Google Scholar 

  17. 17.

    S.-K. Lin, T.-Y. Chung, S.-W. Chen, and C.-H. Chang, J. Mater. Res. 24, 2628 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    C. Schneider, W. Rasband, and K. Eliceiri, Nat. Methods 9, 671 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    S.R. de Debiaggi, C.D. Toro, G.F. Cabeza, and A.F. Guillermet, J. Alloys Compd. 542, 280 (2012).

    Article  Google Scholar 

  20. 20.

    C.S. Schwandt, Microsc. Microanal. 20, 734 (2014).

    Article  Google Scholar 

  21. 21.

    C. Chen and S.W. Liang, J. Mater. Sci. Mater. Electron. 18, 259 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was funded by Intel Corporation. Experiments and characterization were completed at the Center for 4D Materials Science at Arizona State University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nikhilesh Chawla.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kelly, M.B., Antoniswamy, A., Mahajan, R. et al. Effect of Trace Addition of In on Sn-Cu Solder Joint Microstructure Under Electromigration. Journal of Elec Materi 50, 893–902 (2021). https://doi.org/10.1007/s11664-020-08602-z

Download citation

Keywords

  • Indium
  • lead-free solder
  • electromigration
  • TEM
  • intermetallics
  • thermal aging